Suppr超能文献

植入物感染中的生物膜:其产生与调控

Biofilm in implant infections: its production and regulation.

作者信息

Costerton J W, Montanaro L, Arciola C R

机构信息

Center for Biofilms, School of Dentistry, University of Southern California, Los Angeles, California, USA.

出版信息

Int J Artif Organs. 2005 Nov;28(11):1062-8. doi: 10.1177/039139880502801103.

Abstract

A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intraocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intra-ocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.

摘要

相当一部分医用植入物会成为与器械相关感染的焦点,这种感染难以根除,因为引发这些感染的细菌生活在发育良好的生物膜中。生物膜是一种源自微生物的固着群落,其特征是细胞不可逆地附着于基质或彼此的界面,并嵌入它们所产生的细胞外聚合物质基质中。细菌黏附和生物膜形成过程分两步进行:第一步是附着于表面,第二步是细胞间黏附,细菌在人工表面形成多层结构。第一步需要细菌表面蛋白的介导,其中主要的一种类似于金黄色葡萄球菌自溶素,称为AtlE。在葡萄球菌中,生物膜的细胞外聚合物质基质是β-1,6-连接的N-乙酰葡糖胺(PIA)聚合物,其合成由ica操纵子介导。生物膜形成部分受群体感应控制,群体感应是一种依赖于种群密度的细菌间通讯机制。可能受到生物膜相关感染影响的主要植入物包括:中心静脉导管、心脏瓣膜、心室辅助装置、冠状动脉支架、神经外科脑室分流管、植入式神经刺激器、关节假体、骨折固定装置、可膨胀阴茎植入物、乳房植入物、人工耳蜗、人工晶状体、牙种植体。生物膜在抗生素耐药性传播中起重要作用。在高密度细菌群体中,耐药性和毒力基因会进行有效的水平转移。未来,抑制生物膜控制基因转录的治疗方法可能是抑制这些感染的成功策略。相当一部分医用植入物会成为与器械相关感染的焦点,这种感染难以根除,因为引发这些感染的细菌生活在发育良好的生物膜中。生物膜是一种源自微生物的固着群落,其特征是细胞不可逆地附着于基质或彼此的界面,并嵌入它们所产生的细胞外聚合物质基质中。细菌黏附和生物膜形成过程分两步进行:第一步是附着于表面,第二步是细胞间黏附,细菌在人工表面形成多层结构。第一步需要细菌表面蛋白的介导,其中主要的一种类似于金黄色葡萄球菌自溶素,称为AtlE。在葡萄球菌中,生物膜的细胞外聚合物质基质是β-1,6-连接的N-乙酰葡糖胺(PIA)聚合物,其合成由ica操纵子介导。生物膜形成部分受群体感应控制,群体感应是一种依赖于种群密度的细菌间通讯机制。可能受到生物膜相关感染影响的主要植入物包括:中心静脉导管、心脏瓣膜、心室辅助装置、冠状动脉支架、神经外科脑室分流管、植入式神经刺激器、关节假体、骨折固定装置、可膨胀阴茎植入物、乳房植入物、人工耳蜗、人工晶状体、牙种植体。生物膜在抗生素耐药性传播中起重要作用。在高密度细菌群体中,耐药性和毒力基因会进行有效的水平转移。未来,抑制生物膜控制基因转录的治疗方法可能是抑制这些感染的成功策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验