Lee A, Bray G A
Department of Medicine, University of Southern California L.A. County-USC Medical Center, Los Angeles, CA, USA.
Obes Res. 1993 Nov;1(6):449-58. doi: 10.1002/j.1550-8528.1993.tb00027.x.
This paper has tested the hypothesis that patients with hypothalamic obesity have altered mechanisms controlling insulin secretion when compared to obese patients without hypothalamic injury. Fasting glucose and insulin values were significantly higher in the morning than in the afternoon in the six control obese patients, but there was no diurnal difference in the six patients with hypothalamic obesity (n=6). The control obese subjects showed a diurnal variation in glucose-stimulated insulin secretion, whereas the patients with hypothalamic obesity did not, suggesting that hypothalamic injury had destroyed diurnal rhythms. Naloxone, an opioid antagonist, acutely suppressed fasting insulin in the six patients with essential obesity but had little effect on fasting insulin in the three patients with hypothalamic obesity or in five normal-weight controls. Naloxone increased insulin sensitivity in the obese control patients, but did not affect either insulin secretion or insulin sensitivity in patients with hypothalamic obesity or in normal weight subjects. Our results support the conclusion that hypothalamic obesity disrupts diurnal rhythms, with the suggestion that opioid peptides affect insulin secretion differently in patients with essential obesity as compared to normal weight subjects or those with hypothalamic obesity.