Suppr超能文献

用于硬明胶胶囊制剂开发的原型智能混合系统的推广。

Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development.

作者信息

Wilson Wendy I, Peng Yun, Augsburger Larry L

机构信息

Department of Pharmaceutical Sciences, University of Maryland-Baltimore, Baltimore, MD 21201, USA.

出版信息

AAPS PharmSciTech. 2005 Oct 22;6(3):E449-57. doi: 10.1208/pt060356.

Abstract

The aim of this project was to expand a previously developed prototype expert network for use in the analysis of multiple biopharmaceutics classification system (BCS) class II drugs. The model drugs used were carbamazepine, chlorpropamide, diazepam, ibuprofen, ketoprofen, naproxen, and piroxicam. Recommended formulations were manufactured and tested for dissolution performance. A comprehensive training data set for the model drugs was developed and used to retrain the artificial neural network. The training and the system were validated based on the comparison of predicted and observed performance of the recommended formulations. The initial test of the system resulted in high error values, indicating poor prediction capabilities for drugs other than piroxicam. A new data set, containing 182 batches, was used for retraining. Ten percent of the test batches were used for cross-validation, resulting in models with R2 > or = 70%. The comparison of observed performance to the predicted performance found that the system predicted successfully. The hybrid network was generally able to predict the amount of drug dissolved within 5% for the model drugs. Through validation, the system was proven to be capable of designing formulations that met specific drug performance criteria. By including parameters to address wettability and the intrinsic dissolution characteristics of the drugs, the hybrid system was shown to be suitable for analysis of multiple BCS class II drugs.

摘要

本项目的目的是扩展先前开发的原型专家网络,以用于分析多种生物药剂学分类系统(BCS)II类药物。所使用的模型药物有卡马西平、氯磺丙脲、地西泮、布洛芬、酮洛芬、萘普生和吡罗昔康。制备了推荐制剂并对其溶出性能进行了测试。为模型药物开发了一个全面的训练数据集,并用于重新训练人工神经网络。基于推荐制剂预测性能与观察性能的比较对训练和系统进行了验证。该系统的初始测试产生了较高的误差值,表明除吡罗昔康外,对其他药物的预测能力较差。一个包含182批样品的新数据集用于重新训练。10%的测试批次用于交叉验证,得到R2≥70%的模型。观察性能与预测性能的比较发现该系统预测成功。混合网络通常能够预测模型药物在5%以内的溶出量。通过验证,该系统被证明能够设计出符合特定药物性能标准的制剂。通过纳入解决药物润湿性和固有溶出特性的参数,该混合系统被证明适用于多种BCS II类药物的分析。

相似文献

3
Modulating drug release profiles by lipid semi solid matrix formulations for BCS class II drug--an in vitro and an in vivo study.
Drug Deliv. 2015 May;22(3):418-26. doi: 10.3109/10717544.2013.878965. Epub 2014 Jan 29.
6
Effect of glycine/citric acid on the dissolution stability of hard gelatin capsules.
Drug Dev Ind Pharm. 1998 Jun;24(6):493-500. doi: 10.3109/03639049809085649.
8
In vitro and in vivo pharmacoscintigraphic evaluation of ibuprofen hypromellose and gelatin capsules.
Pharm Res. 2004 May;21(5):793-8. doi: 10.1023/b:pham.0000026430.73789.e6.
10
The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.
Eur J Pharm Sci. 2014 Jun 16;57:152-63. doi: 10.1016/j.ejps.2014.01.009. Epub 2014 Jan 28.

引用本文的文献

3
Drug Design: Where We Are and Future Prospects.
Molecules. 2021 Nov 22;26(22):7061. doi: 10.3390/molecules26227061.
4
Artificial intelligence in drug discovery and development.
Drug Discov Today. 2021 Jan;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010. Epub 2020 Oct 21.
5
Deep learning for prediction of pharmaceutical formulations.
Acta Pharm Sin B. 2019 Jan;9(1):177-185. doi: 10.1016/j.apsb.2018.09.010. Epub 2018 Sep 28.
7
The use of modeling tools to drive efficient oral product design.
AAPS J. 2012 Sep;14(3):591-600. doi: 10.1208/s12248-012-9372-3. Epub 2012 May 30.
8
Crystal structure transformations and dissolution studies of cimetidine-piroxicam coprecipitates and physical mixtures.
AAPS PharmSciTech. 2009;10(3):789-95. doi: 10.1208/s12249-009-9263-9. Epub 2009 Jun 12.

本文引用的文献

3
Formula optimization of theophylline controlled-release tablet based on artificial neural networks.
J Control Release. 2000 Aug 10;68(2):175-86. doi: 10.1016/s0168-3659(00)00248-0.
5
Formula optimization based on artificial neural networks in transdermal drug delivery.
J Control Release. 1999 Nov 1;62(1-2):161-70. doi: 10.1016/s0168-3659(99)00033-4.
8
Artificial neural network as a novel method to optimize pharmaceutical formulations.
Pharm Res. 1999 Jan;16(1):1-6. doi: 10.1023/a:1011986823850.
10
Relating formulation variables to in vitro dissolution using an artificial neural network.
Pharm Dev Technol. 1997 Aug;2(3):225-32. doi: 10.3109/10837459709031442.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验