Suppr超能文献

使用通用模型空间对多参考耦合簇(MRCC)理论的大小广泛归一化作用的重新评估:一种价态通用的MRCC方法。

Reappraisal of the role of size-extensive normalization for multireference coupled cluster (MRCC) theory using general model space: a valence universal MRCC approach.

作者信息

Bera Nabakumar, Ghosh Subhasree, Mukherjee Debashis, Chattopadhyay Sudip

机构信息

Department of Physical Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India.

出版信息

J Phys Chem A. 2005 Dec 22;109(50):11462-9. doi: 10.1021/jp053633e.

Abstract

We present a brief description of a valence-universal multireference coupled cluster (VU-MRCC) theory that can handle completely general incomplete model spaces, remaining close to the intermediate normalization (IN) condition for omega as much as possible without violating extensivity and without the use of a post facto correction. In this formalism, the connectedness of the cluster operators as well as effective Hamiltonian and hence the extensivity of the corresponding roots is achieved by invoking appropriate decoupling conditions on the special type of wave operator omega = {exp(S + X(cl))} satisfying the Bloch equations in the Fock-space S in an excitation operator and X is a closed operator (denoted by cl). This special type of wave-operator leads to a unique partition of the excitations from the model space into those generated by the cluster operators (open and quasi-open) and those generated by the effective Hamiltonian (closed). In this formulation, for every X(cl), there is a counterterm from {exp(S)}(cl) canceling each other. This leads to a connected expressions for cluster amplitudes, using the constraint omega(cl) = 1. The new form of the effective Hamiltonian preserves the extensivity of the target energies. Our analysis implies that IN for omega is a valid size-extensive normalization for certain special IMS such as the quasi-complete model space and the isolated incomplete model space.

摘要

我们简要介绍了一种价态通用多参考耦合簇(VU-MRCC)理论,该理论能够处理完全一般的不完全模型空间,在不违反广延性且不使用事后修正的情况下,尽可能接近ω的中间归一化(IN)条件。在这种形式体系中,通过对满足福克空间S中布洛赫方程的特殊类型波算子ω = {exp(S + X(cl))}调用适当的解耦条件,实现了簇算子以及有效哈密顿量的连通性,从而实现了相应根的广延性,其中激发算子中的X是一个封闭算子(用cl表示)。这种特殊类型的波算子导致了从模型空间的激发唯一地划分为由簇算子产生的激发(开放和准开放)以及由有效哈密顿量产生的激发(封闭)。在这种表述中,对于每个X(cl),都有一个来自{exp(S)}(cl)的反项相互抵消。利用约束ω(cl) = 1,这导致了簇振幅的连通表达式。有效哈密顿量的新形式保持了目标能量的广延性。我们的分析表明,对于ω的IN对于某些特殊的不完全模型空间(如准完全模型空间和孤立不完全模型空间)是一种有效的尺寸广延归一化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验