Suppr超能文献

在崎岖地形上奔跑:尽管底物高度出现了巨大的意外变化,珍珠鸡仍能保持动态稳定性。

Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.

作者信息

Daley Monica A, Usherwood James R, Felix Gladys, Biewener Andrew A

机构信息

Concord Field Station, MCZ, Harvard University, Old Causeway Road, Bedford, MA 01730, USA.

出版信息

J Exp Biol. 2006 Jan;209(Pt 1):171-87. doi: 10.1242/jeb.01986.

Abstract

In the natural world, animals must routinely negotiate varied and unpredictable terrain. Yet, we know little about the locomotor strategies used by animals to accomplish this while maintaining dynamic stability. In this paper, we perturb the running of guinea fowl with an unexpected drop in substrate height (DeltaH). The drop is camouflaged to remove any visual cue about the upcoming change in terrain that would allow an anticipatory response. To maintain stability upon a sudden drop in substrate height and prevent a fall, the bird must compensate by dissipating energy or converting it to another form. The aim of this paper is to investigate the control strategies used by birds in this task. In particular, we assess the extent to which guinea fowl maintain body weight support and conservative spring-like body dynamics in the perturbed step. This will yield insight into how animals integrate mechanics and control to maintain dynamic stability in the face of real-world perturbations. Our results show that, despite altered body dynamics and a great deal of variability in the response, guinea fowl are quite successful in maintaining dynamic stability, as they stumbled only once (without falling) in the 19 unexpected perturbations. In contrast, when the birds could see the upcoming drop in terrain, they stumbled in 4 of 20 trials (20%, falling twice), and came to a complete stop in an additional 6 cases (30%). The bird's response to the unexpected perturbation fell into three general categories: (1) conversion of vertical energy (EV=EP+EKv) to horizontal kinetic energy (EKh), (2) absorption of EV through negative muscular work (-DeltaEcom), or (3) converting EP to vertical kinetic energy (EKv), effectively continuing the ballistic path of the animal's center of mass (COM) from the prior aerial phase. However, the mechanics that distinguish these categories actually occur along a continuum with varying degrees of body weight support and actuation by the limb, related to the magnitude and direction of the ground reaction force (GRF) impulse, respectively. In most cases, the muscles of the limb either produced or absorbed energy during the response, as indicated by net changes in COM energy (Ecom). The limb likely begins stance in a more retracted, extended position due to the 26 ms delay in ground contact relative to that anticipated by the bird. This could explain the diminished decelerating force during the first half of stance and the exchange between EP and EK during stance as the body vaults over the limb. The varying degree of weight support and energy absorption in the perturbed step suggests that variation in the initial limb configuration leads to different intrinsic dynamics and reflex action. Future investigation into the limb and muscle mechanics underlying these responses could yield further insight into the control mechanisms that allow such robust dynamic stability of running in the face of large, unexpected perturbations.

摘要

在自然界中,动物必须经常应对各种变化莫测的地形。然而,我们对动物在保持动态稳定性的同时用于应对这种情况的运动策略知之甚少。在本文中,我们通过突然降低底物高度(ΔH)来干扰珍珠鸡的奔跑。这种下降被伪装起来,以消除任何关于即将到来的地形变化的视觉线索,从而避免预期反应。为了在底物高度突然下降时保持稳定并防止摔倒,鸟类必须通过消耗能量或将其转化为另一种形式来进行补偿。本文的目的是研究鸟类在这项任务中使用的控制策略。特别是,我们评估了珍珠鸡在受干扰的步伐中维持体重支撑和类似保守弹簧的身体动力学的程度。这将有助于深入了解动物如何整合力学和控制,以在面对现实世界的干扰时保持动态稳定性。我们的结果表明,尽管身体动力学发生了改变,并且反应存在很大的变异性,但珍珠鸡在维持动态稳定性方面相当成功,因为它们在19次意外干扰中只绊倒了一次(没有摔倒)。相比之下,当鸟类能够看到即将到来的地形下降时,它们在20次试验中有4次绊倒(20%,摔倒两次),另有6次完全停止(30%)。鸟类对意外干扰的反应大致可分为三类:(1)将垂直能量(EV=EP+EKv)转化为水平动能(EKh),(2)通过负肌肉功(-ΔEcom)吸收EV,或(3)将EP转化为垂直动能(EKv),有效地延续动物质心(COM)从前一个空中阶段开始的弹道轨迹。然而,区分这些类别的力学实际上是沿着一个连续体发生的,体重支撑和肢体驱动的程度各不相同,分别与地面反作用力(GRF)冲量的大小和方向有关。在大多数情况下,肢体肌肉在反应过程中要么产生能量,要么吸收能量,如COM能量(Ecom)的净变化所示。由于地面接触相对于鸟类预期的延迟26毫秒,肢体可能在更收缩、伸展的位置开始站立。这可以解释站立前半段减速力的减弱以及身体越过肢体时站立过程中EP和EK之间的转换。受干扰步伐中体重支撑和能量吸收的不同程度表明,初始肢体配置的变化会导致不同的内在动力学和反射动作。未来对这些反应背后的肢体和肌肉力学的研究可能会进一步深入了解控制机制,这些机制使得在面对大的、意外的干扰时,奔跑能够具有如此强大的动态稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验