Suppr超能文献

同步脑电图和功能磁共振成像的逐次试验耦合确定了绩效监测的动态过程。

Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring.

作者信息

Debener Stefan, Ullsperger Markus, Siegel Markus, Fiehler Katja, von Cramon D Yves, Engel Andreas K

机构信息

Institute of Neurophysiology and Pathophysiology, Center of Experimental Medicine, University Medical Center, Hamburg University, D-20246 Hamburg, Germany.

出版信息

J Neurosci. 2005 Dec 14;25(50):11730-7. doi: 10.1523/JNEUROSCI.3286-05.2005.

Abstract

Goal-directed behavior requires the continuous monitoring and dynamic adjustment of ongoing actions. Here, we report a direct coupling between the event-related electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and behavioral measures of performance monitoring in humans. By applying independent component analysis to EEG signals recorded simultaneously with fMRI, we found the single-trial error-related negativity of the EEG to be systematically related to behavior in the subsequent trial, thereby reflecting immediate behavioral adjustments of a cognitive performance monitoring system. Moreover, this trial-by-trial EEG measure of performance monitoring predicted the fMRI activity in the rostral cingulate zone, a brain region thought to play a key role in processing of response errors. We conclude that investigations of the dynamic coupling between EEG and fMRI provide a powerful approach for the study of higher order brain functions.

摘要

目标导向行为需要对正在进行的动作进行持续监测和动态调整。在此,我们报告了人类事件相关脑电图(EEG)、功能磁共振成像(fMRI)与绩效监测行为指标之间的直接耦合。通过对与fMRI同时记录的EEG信号应用独立成分分析,我们发现EEG的单次试验错误相关负波与后续试验中的行为系统相关,从而反映了认知绩效监测系统的即时行为调整。此外,这种逐次试验的EEG绩效监测指标预测了喙扣带区的fMRI活动,该脑区被认为在处理反应错误中起关键作用。我们得出结论,对EEG和fMRI之间动态耦合的研究为高阶脑功能的研究提供了一种强大的方法。

相似文献

2
Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI.
Neuroimage. 2015 Jan 15;105:395-407. doi: 10.1016/j.neuroimage.2014.10.028. Epub 2014 Oct 22.
3
Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
J Neurosci. 2017 Aug 16;37(33):7803-7810. doi: 10.1523/JNEUROSCI.0326-17.2017. Epub 2017 Jul 11.
4
The role of intact frontostriatal circuits in error processing.
J Cogn Neurosci. 2006 Apr;18(4):651-64. doi: 10.1162/jocn.2006.18.4.651.
5
Coupling electrophysiological and hemodynamic responses to errors.
Hum Brain Mapp. 2012 Jul;33(7):1621-33. doi: 10.1002/hbm.21305. Epub 2011 May 26.
6
Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making.
Neuroimage. 2008 Aug 1;42(1):158-68. doi: 10.1016/j.neuroimage.2008.04.236. Epub 2008 Apr 29.
7
A cerebellar role in performance monitoring - evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease.
Neuropsychologia. 2015 Feb;68:139-47. doi: 10.1016/j.neuropsychologia.2015.01.017. Epub 2015 Jan 12.
8
Development of the error-monitoring system from ages 9-35: Unique insight provided by MRI-constrained source localization of EEG.
Neuroimage. 2017 Aug 15;157:13-26. doi: 10.1016/j.neuroimage.2017.05.045. Epub 2017 May 24.
9
Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):592-607. doi: 10.1016/j.neuroimage.2013.04.113. Epub 2013 May 9.

引用本文的文献

2
Error encoding in human speech motor cortex.
bioRxiv. 2025 Jun 8:2025.06.07.658426. doi: 10.1101/2025.06.07.658426.
3
Midfrontal mechanisms of performance monitoring continuously adapt to incoming information during outcome anticipation.
Neuroimage Rep. 2023 Sep 4;3(3):100182. doi: 10.1016/j.ynirp.2023.100182. eCollection 2023 Sep.
4
Attentional Precursors of Errors Predict Error-Related Brain Activity.
J Neurosci. 2025 Jul 9;45(28):e0757252025. doi: 10.1523/JNEUROSCI.0757-25.2025.
6
The role of the left posterior temporal cortex in speech monitoring.
Cogn Neuropsychol. 2025 Apr 18:1-16. doi: 10.1080/02643294.2025.2492038.
7
The impact of impulsivity and compulsivity on error processing in different motivational contexts.
Cogn Affect Behav Neurosci. 2025 Mar 5. doi: 10.3758/s13415-025-01281-5.
9
10
Psychosis superspectrum II: neurobiology, treatment, and implications.
Mol Psychiatry. 2024 May;29(5):1293-1309. doi: 10.1038/s41380-024-02410-1. Epub 2024 Feb 14.

本文引用的文献

1
Event-related f MRI.
Hum Brain Mapp. 1997;5(4):243-8. doi: 10.1002/(SICI)1097-0193(1997)5:4<243::AID-HBM7>3.0.CO;2-3.
2
Removal of FMRI environment artifacts from EEG data using optimal basis sets.
Neuroimage. 2005 Nov 15;28(3):720-37. doi: 10.1016/j.neuroimage.2005.06.067. Epub 2005 Sep 16.
4
Learned predictions of error likelihood in the anterior cingulate cortex.
Science. 2005 Feb 18;307(5712):1118-21. doi: 10.1126/science.1105783.
5
Human anterior cingulate neurons and the integration of monetary reward with motor responses.
Nat Neurosci. 2004 Dec;7(12):1370-5. doi: 10.1038/nn1354. Epub 2004 Nov 21.
6
Neuroimaging of performance monitoring: error detection and beyond.
Cortex. 2004 Sep-Dec;40(4-5):593-604. doi: 10.1016/s0010-9452(08)70155-2.
7
The role of the medial frontal cortex in cognitive control.
Science. 2004 Oct 15;306(5695):443-7. doi: 10.1126/science.1100301.
8
The neural basis of error detection: conflict monitoring and the error-related negativity.
Psychol Rev. 2004 Oct;111(4):931-959. doi: 10.1037/0033-295x.111.4.939.
9
Biophysical models of fMRI responses.
Curr Opin Neurobiol. 2004 Oct;14(5):629-35. doi: 10.1016/j.conb.2004.08.006.
10
Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation.
Clin Neurophysiol. 2004 Aug;115(8):1821-35. doi: 10.1016/j.clinph.2004.03.031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验