Tsai Hui-Ju, Weeks Daniel E
Department of Human Genetics, University of Pittsburgh, PA 15261, USA.
Genet Epidemiol. 2006 Jan;30(1):77-93. doi: 10.1002/gepi.20126.
For complex traits, it may be possible to increase the power to detect linkage if one takes advantage of covariate information. Several statistics have been proposed that incorporate quantitative covariate information into affected sib pair (ASP) linkage analysis. However, it is not clear how these statistics perform under different gene-environment (G x E) interactions. We compare representative statistics to each other on simulated data under three biologically-plausible G x E models. We also compared their performance with a model-free method and with quantitative trait locus (QTL) linkage approaches. The statistics considered here are: (1) mixture model; (2) general conditional-logistic model (LODPAL); (3) multinomial logistic regression models (MLRM); (4) extension of the maximum-likelihood-binomial approach (MLB); (5) ordered-subset analysis (OSA); and (6) logistic regression modeling (COVLINK). In all three G x E models, most of these six statistics perform better when using the covariate C1 associated with a G x E interaction effect than when using the environmental risk factor C2 or the random noise covariate C3. Compared with a model-free method without covariates (S(all)), the mixture model performs the best when using C1, with the high-to-low OSA method also performing quite well. Generally, MLB is the least sensitive to covariate choice. However, most of these statistics do not provide better power than S(all). Thus, while inclusion of the "correct" covariate can lead to increased power, careful selection of appropriate covariates is vital for success.
对于复杂性状,如果利用协变量信息,可能会提高检测连锁的效能。已经提出了几种将定量协变量信息纳入受累同胞对(ASP)连锁分析的统计方法。然而,尚不清楚这些统计方法在不同的基因-环境(G×E)相互作用下的表现如何。我们在三种生物学上合理的G×E模型下,对模拟数据上的代表性统计方法进行了相互比较。我们还将它们的性能与一种无模型方法以及数量性状基因座(QTL)连锁分析方法进行了比较。这里考虑的统计方法有:(1)混合模型;(2)一般条件逻辑模型(LODPAL);(3)多项逻辑回归模型(MLRM);(4)最大似然二项式方法的扩展(MLB);(5)有序子集分析(OSA);以及(6)逻辑回归建模(COVLINK)。在所有三种G×E模型中,当使用与G×E相互作用效应相关的协变量C1时,这六种统计方法中的大多数比使用环境风险因素C2或随机噪声协变量C3时表现更好。与无协变量的无模型方法(S(all))相比,混合模型在使用C1时表现最佳,从高到低的OSA方法也表现得相当好。一般来说,MLB对协变量选择最不敏感。然而,这些统计方法中的大多数并没有比S(all)提供更好的效能。因此,虽然纳入“正确”的协变量可以提高效能,但仔细选择合适的协变量对于成功至关重要。