Suppr超能文献

猴子眼球跟踪反应背后的视觉运动探测器。

The visual motion detectors underlying ocular following responses in monkeys.

作者信息

Miura Kenichiro, Matsuura Kiyoto, Taki Masakatsu, Tabata Hiromitsu, Inaba Naoko, Kawano Kenji, Miles Frederick A

机构信息

Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Japan.

出版信息

Vision Res. 2006 Mar;46(6-7):869-78. doi: 10.1016/j.visres.2005.10.021. Epub 2005 Dec 13.

Abstract

Psychophysical evidence indicates that visual motion can be sensed by low-level (energy-based) and high-level (feature-based) mechanisms. The present experiments were undertaken to determine which of these mechanisms mediates the initial ocular following response (OFR) that can be elicited at ultra-short latencies by sudden motion of large-field images. We used the methodology of Sheliga, Chen, Fitzgibbon, and Miles (Initial ocular following in humans: A response to first-order motion energy. Vision Research, 2005a), who studied the initial OFRs of humans, to study the initial OFRs of monkeys. Accordingly, we applied horizontal motion to: (1) vertical square-wave gratings lacking the fundamental ("missing fundamental stimulus") and (2) vertical grating patterns consisting of the sum of two sinusoids of frequency 3f and 4f, which created a repeating pattern with beat frequency, f. Both visual stimuli share a critical property: when subject to 1/4-wavelength steps, their overall pattern (feature) shifts in the direction of the steps, whereas their major Fourier component shifts in the reverse direction (because of spatial aliasing). We found that the initial OFRs of monkeys to these stimuli, like those of humans, were always in the opposite direction to the 1/4-wavelength shifts, i.e., in the direction of the major Fourier component, consistent with detection by (low-level) oriented spatio-temporal filters as in the well-known energy model of motion analysis. Our data indicate that the motion detectors mediating the initial OFR have quantitatively similar properties in monkeys and humans, suggesting that monkeys provide a good animal model for the human OFR.

摘要

心理物理学证据表明,视觉运动可通过低层次(基于能量)和高层次(基于特征)机制来感知。本实验旨在确定这些机制中哪一种介导了最初的眼跟踪反应(OFR),这种反应可由大视野图像的突然运动在超短潜伏期引发。我们采用了谢利加、陈、菲茨吉本和迈尔斯(《人类的最初眼跟踪:对一阶运动能量的反应》,《视觉研究》,2005年a期)研究人类最初眼跟踪反应的方法来研究猴子的最初眼跟踪反应。因此,我们对以下两种情况施加水平运动:(1)缺少基频的垂直方波光栅(“缺失基频刺激”),以及(2)由频率为3f和4f的两个正弦波之和组成的垂直光栅图案,该图案产生了拍频为f的重复图案。这两种视觉刺激都具有一个关键特性:当经历1/4波长步长时,它们的整体图案(特征)会沿步长方向移动,而其主要傅里叶分量会沿相反方向移动(由于空间混叠)。我们发现,猴子对这些刺激的最初眼跟踪反应与人类一样,总是与1/4波长移动方向相反,即沿主要傅里叶分量的方向,这与在著名的运动分析能量模型中由(低层次)定向时空滤波器进行检测一致。我们的数据表明,介导最初眼跟踪反应的运动探测器在猴子和人类中具有数量上相似的特性,这表明猴子为人类眼跟踪反应提供了一个良好的动物模型。

相似文献

1
The visual motion detectors underlying ocular following responses in monkeys.
Vision Res. 2006 Mar;46(6-7):869-78. doi: 10.1016/j.visres.2005.10.021. Epub 2005 Dec 13.
2
The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
Vision Res. 2006 Mar;46(6-7):979-92. doi: 10.1016/j.visres.2005.09.001. Epub 2005 Oct 18.
3
Initial ocular following in humans: a response to first-order motion energy.
Vision Res. 2005 Nov;45(25-26):3307-21. doi: 10.1016/j.visres.2005.03.011.
5
Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.
Vision Res. 2006 Jun;46(13):2041-60. doi: 10.1016/j.visres.2005.11.033. Epub 2006 Feb 20.
6
Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
Ann N Y Acad Sci. 2005 Apr;1039:260-71. doi: 10.1196/annals.1325.025.
7
The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors.
Vision Res. 2007 Sep;47(20):2637-60. doi: 10.1016/j.visres.2007.06.013. Epub 2007 Aug 15.
8
Ocular following responses of monkeys to the competing motions of two sinusoidal gratings.
Neurosci Res. 2008 May;61(1):56-69. doi: 10.1016/j.neures.2008.01.010. Epub 2008 Jan 31.
9
Contribution of color signals to ocular following responses.
Eur J Neurosci. 2016 Oct;44(8):2600-2613. doi: 10.1111/ejn.13361. Epub 2016 Sep 4.
10

引用本文的文献

6
Speed Estimation for Visual Tracking Emerges Dynamically from Nonlinear Frequency Interactions.
eNeuro. 2022 May 13;9(3). doi: 10.1523/ENEURO.0511-21.2022. Print 2022 May-Jun.
7
Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva.
Front Neural Circuits. 2022 Jan 7;15:814128. doi: 10.3389/fncir.2021.814128. eCollection 2021.
8
Influence of Aging on the Retina and Visual Motion Processing for Optokinetic Responses in Mice.
Front Neurosci. 2020 Dec 1;14:586013. doi: 10.3389/fnins.2020.586013. eCollection 2020.
10
Binocular summation for reflexive eye movements.
J Vis. 2018 Apr 1;18(4):7. doi: 10.1167/18.4.7.

本文引用的文献

1
Initial ocular following in humans: a response to first-order motion energy.
Vision Res. 2005 Nov;45(25-26):3307-21. doi: 10.1016/j.visres.2005.03.011.
2
Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
Ann N Y Acad Sci. 2005 Apr;1039:260-71. doi: 10.1196/annals.1325.025.
3
Short-latency disparity vergence in humans: evidence for early spatial filtering.
Ann N Y Acad Sci. 2005 Apr;1039:252-9. doi: 10.1196/annals.1325.024.
4
Motion perception without explicit activity in areas MT and MST.
J Neurophysiol. 2004 Sep;92(3):1512-23. doi: 10.1152/jn.01174.2003. Epub 2004 Apr 14.
5
Ocular tracking of moving targets: effects of perturbing the background.
J Neurophysiol. 2004 Jun;91(6):2474-83. doi: 10.1152/jn.01079.2003. Epub 2004 Feb 4.
6
Testing quantitative models of binocular disparity selectivity in primary visual cortex.
J Neurophysiol. 2003 Nov;90(5):2795-817. doi: 10.1152/jn.01110.2002. Epub 2003 Jul 16.
7
8
Contrast dependence of response normalization in area MT of the rhesus macaque.
J Neurophysiol. 2002 Dec;88(6):3398-408. doi: 10.1152/jn.00255.2002.
9
Reversed short-latency ocular following.
Vision Res. 2002 Aug;42(17):2081-7. doi: 10.1016/s0042-6989(02)00082-2.
10
Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function.
J Neurophysiol. 2002 Aug;88(2):888-913. doi: 10.1152/jn.2002.88.2.888.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验