Suppr超能文献

相似文献

4
SLC34A3 intronic deletion in a new kindred with hereditary hypophosphatemic rickets with hypercalciuria.
J Clin Res Pediatr Endocrinol. 2012 Jun;4(2):89-93. doi: 10.4274/jcrpe.601.
8
Late-onset hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to mutation of SLC34A3/NPT2c.
Bone. 2017 Apr;97:15-19. doi: 10.1016/j.bone.2016.12.001. Epub 2016 Dec 7.
10
Intronic Deletion in an Iranian Kindred with Hereditary Hypophosphatemic Rickets with Hypercalciuria.
J Clin Res Pediatr Endocrinol. 2018 Nov 29;10(4):343-349. doi: 10.4274/jcrpe.0057. Epub 2018 May 29.

引用本文的文献

2
X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.
Calcif Tissue Int. 2025 Sep 9;116(1):120. doi: 10.1007/s00223-025-01415-4.
3
Kidney stone disease: risk factors, pathophysiology and management.
Nat Rev Nephrol. 2025 Aug 11. doi: 10.1038/s41581-025-00990-x.
4
Updates on renal phosphate transport.
Curr Opin Nephrol Hypertens. 2025 Jul 1;34(4):269-275. doi: 10.1097/MNH.0000000000001090. Epub 2025 May 13.
5
Phosphate transporters, candidate genes, and the prosecutor's fallacy.
Pediatr Nephrol. 2025 Jun;40(6):1825-1829. doi: 10.1007/s00467-025-06660-1. Epub 2025 Jan 22.
6
Phosphate metabolism: its impact on disorders of mineral metabolism.
Endocrine. 2025 Apr;88(1):1-13. doi: 10.1007/s12020-024-04092-9. Epub 2024 Nov 11.
7
Diagnostic approach to rickets: an Endocrine Society of Bengal (ESB) consensus statement.
Ann Pediatr Endocrinol Metab. 2024 Oct;29(5):284-307. doi: 10.6065/apem.2448044.022. Epub 2024 Oct 31.
8
Effects of SLC34A3 or SLC34A1 variants on calcium and phosphorus homeostasis.
Pediatr Nephrol. 2025 Jan;40(1):117-129. doi: 10.1007/s00467-024-06505-3. Epub 2024 Sep 10.
9
The role of fibroblast growth factor 23 in regulation of phosphate balance.
Pediatr Nephrol. 2024 Dec;39(12):3439-3451. doi: 10.1007/s00467-024-06395-5. Epub 2024 Jun 14.
10
Review of childhood genetic nephrolithiasis and nephrocalcinosis.
Front Genet. 2024 Mar 28;15:1381174. doi: 10.3389/fgene.2024.1381174. eCollection 2024.

本文引用的文献

1
Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12606-11. doi: 10.1073/pnas.0505882102. Epub 2005 Aug 19.
2
Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter.
Annu Rev Nutr. 2005;25:197-214. doi: 10.1146/annurev.nutr.25.050304.092642.
3
NaPi-IIa and interacting partners.
J Physiol. 2005 Aug 15;567(Pt 1):21-6. doi: 10.1113/jphysiol.2005.087049. Epub 2005 May 12.
4
Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia.
J Am Soc Nephrol. 2005 Jun;16(6):1645-53. doi: 10.1681/ASN.2004121060. Epub 2005 Apr 20.
5
Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
Am J Physiol Renal Physiol. 2005 May;288(5):F969-81. doi: 10.1152/ajprenal.00293.2004. Epub 2004 Dec 21.
8
Physiological regulation of renal sodium-dependent phosphate cotransporters.
Jpn J Physiol. 2004 Apr;54(2):93-102. doi: 10.2170/jjphysiol.54.93.
9
FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis.
J Bone Miner Res. 2004 Mar;19(3):429-35. doi: 10.1359/JBMR.0301264. Epub 2003 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验