Poznik G David, Adamska Katarzyna, Xu Xin, Krolewski Andrzej S, Rogus John J
Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA 02215, USA.
Am J Hum Genet. 2006 Feb;78(2):222-30. doi: 10.1086/499827. Epub 2005 Dec 8.
Sib pair linkage analysis of a dichotomous trait is a popular method for narrowing the search for genes that influence complex diseases. Although the pedigree structures are uncomplicated and the underlying genetic principles straightforward, a surprising degree of complexity is involved in implementing a sib pair study and interpreting the results. Ascertainment may be based on affected, discordant, or unaffected sib pairs, as well as on pairs defined by threshold values for quantitative traits, such as extreme discordant sib pairs. To optimize power, various domain restrictions and null hypotheses have been proposed for each of these designs, yielding a wide array of choices for the analyst. To begin, we systematically classify the major sources of discretion in sib pair linkage analysis. Then, we extend the work of Kruglyak and Lander (1995), to bring the various forms into a unified framework and to facilitate a more general approach to the analysis. Finally, we describe a new, freely available computer program, Splat (Sib Pair Linkage Analysis Testing), that can perform any sib pair statistical test currently in use, as well as any user-defined test yet to be proposed. Splat uses the expectation maximization algorithm to calculate maximum-likelihood estimates of sharing (subject to user-specified conditions) and then plots LOD scores versus chromosomal position. It includes a novel grid-scanning capability that enables simultaneous visualization of multiple test statistics. This can lead to further insight into the genetic basis of the disease process under consideration. In addition, phenotype definitions can be modified without the recalculation of inheritance vectors, thereby providing considerable flexibility for exploratory analysis. The application of Splat will be illustrated with data from studies on the genetics of diabetic nephropathy.
对二分性状进行同胞对连锁分析是一种常用方法,用于缩小对影响复杂疾病基因的搜索范围。尽管家系结构并不复杂,潜在的遗传原理也很简单,但在实施同胞对研究和解释结果时却涉及到惊人程度的复杂性。确定研究对象可以基于患病同胞对、不一致同胞对或未患病同胞对,也可以基于数量性状阈值定义的同胞对,比如极端不一致同胞对。为了优化检验效能,针对每种设计都提出了各种领域限制和原假设,这为分析人员提供了广泛的选择。首先,我们系统地对同胞对连锁分析中的主要自由裁量来源进行分类。然后,我们扩展了克鲁格利亚克和兰德(1995年)的工作,将各种形式纳入一个统一框架,以便于采用更通用的分析方法。最后,我们描述了一个新的、可免费获取的计算机程序Splat(同胞对连锁分析测试),它可以执行目前使用的任何同胞对统计检验,以及任何尚未提出的用户定义检验。Splat使用期望最大化算法来计算共享的最大似然估计值(根据用户指定的条件),然后绘制LOD分数与染色体位置的关系图。它具有一种新颖的网格扫描功能,能够同时可视化多个检验统计量。这可以进一步深入了解所考虑疾病过程的遗传基础。此外,可以在不重新计算遗传向量的情况下修改表型定义,从而为探索性分析提供了相当大的灵活性。将用糖尿病肾病遗传学研究的数据来说明Splat的应用。