Suppr超能文献

人肝脏羧酸酯酶hCE - 1和hCE - 2对拟除虫菊酯水解作用的表征

Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2.

作者信息

Nishi Kosuke, Huang Huazhang, Kamita Shizuo G, Kim In-Hae, Morisseau Christophe, Hammock Bruce D

机构信息

Department of Entomology and UC Davis Cancer Center, University of California, Davis, CA 95616, USA.

出版信息

Arch Biochem Biophys. 2006 Jan 1;445(1):115-23. doi: 10.1016/j.abb.2005.11.005.

Abstract

Carboxylesterases hydrolyze a large array of endogenous and exogenous ester-containing compounds, including pyrethroid insecticides. Herein, we report the specific activities and kinetic parameters of human carboxylesterase (hCE)-1 and hCE-2 using authentic pyrethroids and pyrethroid-like, fluorescent surrogates. Both hCE-1 and hCE-2 hydrolyzed type I and II pyrethroids with strong stereoselectivity. For example, the trans-isomers of permethrin and cypermethrin were hydrolyzed much faster than corresponding cis-counterparts by both enzymes. Kinetic values of hCE-1 and hCE-2 were determined using cypermethrin and 11 stereoisomers of the pyrethroid-like, fluorescent surrogates. K(m) values for the authentic pyrethroids and fluorescent surrogates were in general lower than those for other ester-containing substrates of hCEs. The pyrethroid-like, fluorescent surrogates were hydrolyzed at rates similar to the authentic pyrethroids by both enzymes, suggesting the potential of these compounds as tools for high throughput screening of esterases that hydrolyze pyrethroids.

摘要

羧酸酯酶可水解大量内源性和外源性含酯化合物,包括拟除虫菊酯类杀虫剂。在此,我们报告了使用纯正拟除虫菊酯类和类拟除虫菊酯荧光替代物时人羧酸酯酶(hCE)-1和hCE-2的比活性及动力学参数。hCE-1和hCE-2均可水解I型和II型拟除虫菊酯类,且具有很强的立体选择性。例如,氯菊酯和氯氰菊酯的反式异构体被这两种酶水解的速度比相应的顺式异构体快得多。使用氯氰菊酯和类拟除虫菊酯荧光替代物的11种立体异构体测定了hCE-1和hCE-2的动力学值。纯正拟除虫菊酯类和荧光替代物的K(m)值通常低于hCEs的其他含酯底物。这两种酶对类拟除虫菊酯荧光替代物的水解速率与纯正拟除虫菊酯类相似,表明这些化合物有潜力作为高通量筛选水解拟除虫菊酯类的酯酶的工具。

相似文献

1
Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2.
Arch Biochem Biophys. 2006 Jan 1;445(1):115-23. doi: 10.1016/j.abb.2005.11.005.
2
Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases.
Biochem Pharmacol. 2006 Feb 28;71(5):657-69. doi: 10.1016/j.bcp.2005.11.020. Epub 2006 Jan 4.
3
Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes.
J Biol Chem. 2004 Jul 9;279(28):29863-9. doi: 10.1074/jbc.M403673200. Epub 2004 Apr 30.
4
Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases.
Toxicol Appl Pharmacol. 2007 May 15;221(1):1-12. doi: 10.1016/j.taap.2007.03.002. Epub 2007 Mar 12.
6
Development of optically pure pyrethroid-like fluorescent substrates for carboxylesterases.
Chem Res Toxicol. 2005 Mar;18(3):516-27. doi: 10.1021/tx049773h.
7
Development of pyrethroid-like fluorescent substrates for glutathione S-transferase.
Anal Biochem. 2012 Dec 15;431(2):77-83. doi: 10.1016/j.ab.2012.09.011. Epub 2012 Sep 19.
8
Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs).
Rev Environ Contam Toxicol. 2008;195:117-78. doi: 10.1007/978-0-387-77030-7_5.
10
Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis.
Insect Biochem Mol Biol. 2005 Jun;35(6):597-609. doi: 10.1016/j.ibmb.2005.02.018. Epub 2005 Mar 31.

引用本文的文献

3
Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors.
Molecules. 2022 Dec 9;27(24):8718. doi: 10.3390/molecules27248718.
6
Chemoproteomics-Enabled De Novo Discovery of Photoswitchable Carboxylesterase Inhibitors for Optically Controlled Drug Metabolism.
Angew Chem Int Ed Engl. 2021 Feb 8;60(6):3071-3079. doi: 10.1002/anie.202011163. Epub 2020 Dec 7.
7
A safety type of genetically engineered bacterium that degrades chemical pesticides.
AMB Express. 2020 Feb 18;10(1):33. doi: 10.1186/s13568-020-00967-y.
8
Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver microsomes.
Heliyon. 2019 Sep 12;5(9):e02466. doi: 10.1016/j.heliyon.2019.e02466. eCollection 2019 Sep.
9
Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides.
Front Microbiol. 2019 Aug 2;10:1778. doi: 10.3389/fmicb.2019.01778. eCollection 2019.
10
Human carboxylesterases: a comprehensive review.
Acta Pharm Sin B. 2018 Sep;8(5):699-712. doi: 10.1016/j.apsb.2018.05.005. Epub 2018 Jun 25.

本文引用的文献

2
Evaluation of alpha-cyano ethers as fluorescent substrates for assay of cytochrome P450 enzyme activity.
Anal Biochem. 2005 Sep 15;344(2):183-92. doi: 10.1016/j.ab.2005.06.032.
3
Fluorescent substrates for soluble epoxide hydrolase and application to inhibition studies.
Anal Biochem. 2005 Aug 1;343(1):66-75. doi: 10.1016/j.ab.2005.03.041.
4
Development of optically pure pyrethroid-like fluorescent substrates for carboxylesterases.
Chem Res Toxicol. 2005 Mar;18(3):516-27. doi: 10.1021/tx049773h.
5
Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38.
Clin Pharmacol Ther. 2004 Dec;76(6):528-35. doi: 10.1016/j.clpt.2004.08.007.
8
Pharmacogenomic assessment of carboxylesterases 1 and 2.
Genomics. 2004 Oct;84(4):661-8. doi: 10.1016/j.ygeno.2004.07.008.
9
Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes.
J Biol Chem. 2004 Jul 9;279(28):29863-9. doi: 10.1074/jbc.M403673200. Epub 2004 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验