Heeb Stephan, Kuehne Sarah A, Bycroft Mark, Crivii Sorana, Allen Mark D, Haas Dieter, Cámara Miguel, Williams Paul
Institute of Infection, Immunity & Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
J Mol Biol. 2006 Feb 3;355(5):1026-36. doi: 10.1016/j.jmb.2005.11.045. Epub 2005 Dec 1.
The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.
RsmA 家族的 RNA 结合蛋白是全局性转录后调节因子,可介导细菌基因表达的广泛变化。它们与靶标 mRNA 结合并影响其翻译速率,该功能会受到一种或多种小的非翻译竞争性调节 RNA 的进一步调控。为了深入了解这种蛋白质/RNA 相互作用的本质,我们利用 X 射线晶体学解析了小肠结肠炎耶尔森菌 RsmA 同源物的结构。RsmA 由一个二聚体β桶组成,从该结构中伸出两条α螺旋。通过对来自不同细菌的 RsmA 蛋白家族进行基于结构的比对,我们确定了可能参与 RNA 结合的关键氨基酸残基。位点特异性诱变表明,位于α螺旋 N 端的第 44 位精氨酸对于体内生物活性和体外 RNA 结合至关重要。该位点的突变会影响人类病原体铜绿假单胞菌的群体运动性、外酶和次级代谢产物的产生、大肠杆菌的碳代谢以及植物有益菌株荧光假单胞菌 CHA0 的氰化氢产生。R44A 突变体也无法与小的非翻译 RNA RsmZ 相互作用。因此,尽管 RsmA 具有与某些真核 RNA 结合蛋白的 KH 结构域相似的基序,但它有很大不同,并包含一类新型的 RNA 结合位点。