Otsuguro K, Ohta T, Ito S
Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
Neuroscience. 2006;138(1):281-91. doi: 10.1016/j.neuroscience.2005.11.007. Epub 2005 Dec 19.
Zinc ions (Zn(2+)) are known to modulate the functions of a variety of channels, receptors and transporters. We examined the effects of Zn(2+) on the reflex potentials evoked by electrical stimulation and responses to depolarizing agents in the isolated spinal cord of the neonatal rat in vitro. Zn(2+) at low concentrations (0.5-2 microM) inhibited, but at high concentrations (5 and 10 microM) augmented, a slow depolarizing component (slow ventral root potential). Zn(2+) had no effect on fast components (monosynaptic reflex potential; fast polysynaptic reflex potential). Unlike Zn(2+), strychnine (5 microM), a glycine receptor antagonist, and (S),9(R)-(-)-bicuculline methobromide (10 microM), a GABA(A) receptor antagonist, potentiated both fast polysynaptic reflex potential and slow ventral root potential. Zn(2+) (5 microM) did not affect depolarizing responses to glutamate and N-methyl-D-aspartate. Zn(2+) enhanced the substance P-evoked depolarization in the absence of tetrodotoxin (0.3 microM) but not in its presence. The dorsal root potential was inhibited by (S),9(R)-(-)-bicuculline methobromide (10 microM) but not by Zn(2+) (5 microM). The Zn(2+)-potentiated slow ventral root potential was inhibited by the N-methyl-D-aspartate receptor antagonists, ketamine (10 microM) and DL-2-amino-5-phosphaonovaleric acid (50 microM) but not by P2X receptor antagonists, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (30 microM) and 2',3'-O-(2,4,6-trinitrophenyl)ATP (10 microM). Ketamine (10 microM) and DL-2-amino-5-phosphaonovaleric acid (50 microM) almost abolished spontaneous activities increased by Zn(2+). It is concluded that Zn(2+) potentiated slow ventral root potential induced by primary afferent stimulation, which was mediated by the activation of N-methyl-D-aspartate receptors but not by activation of P2X receptors or blockade of glycinergic and GABAergic inhibition. Zn(2+) does not seem to directly affect N-methyl-D-aspartate receptors. The release of glutamate from interneurons may play an important role in Zn(2+)-induced potentiation of slow ventral root potential in the spinal cord of the neonatal rat.
已知锌离子(Zn(2+))可调节多种离子通道、受体和转运体的功能。我们在体外研究了Zn(2+)对新生大鼠离体脊髓中电刺激诱发的反射电位以及对去极化剂反应的影响。低浓度(0.5 - 2 microM)的Zn(2+)可抑制,但高浓度(5和10 microM)时则增强一种缓慢去极化成分(缓慢腹根电位)。Zn(2+)对快速成分(单突触反射电位;快速多突触反射电位)无影响。与Zn(2+)不同,甘氨酸受体拮抗剂士的宁(5 microM)和GABA(A)受体拮抗剂(S),9(R)-(-)-荷包牡丹碱甲溴化物(10 microM)可增强快速多突触反射电位和缓慢腹根电位。Zn(2+)(5 microM)不影响对谷氨酸和N-甲基-D-天冬氨酸的去极化反应。在无河豚毒素(0.3 microM)时,Zn(2+)增强P物质诱发的去极化,但存在河豚毒素时则无此作用。背根电位可被(S),9(R)-(-)-荷包牡丹碱甲溴化物(10 microM)抑制,但不受Zn(2+)(5 microM)影响。Zn(2+)增强的缓慢腹根电位可被N-甲基-D-天冬氨酸受体拮抗剂氯胺酮(10 microM)和DL-2-氨基-5-磷酸戊酸(50 microM)抑制,但不受P2X受体拮抗剂磷酸吡哆醛-6-偶氮苯-2',4'-二磺酸(30 microM)和2',3'-O-(2,4,6-三硝基苯基)ATP(10 microM)影响。氯胺酮(10 microM)和DL-2-氨基-5-磷酸戊酸(50 microM)几乎消除了由Zn(2+)增加的自发活动。结论是,Zn(2+)增强初级传入刺激诱发的缓慢腹根电位,这是由N-甲基-D-天冬氨酸受体的激活介导的,而非由P2X受体的激活或甘氨酸能和GABA能抑制的阻断介导。Zn(2+)似乎不直接影响N-甲基-D-天冬氨酸受体。中间神经元释放的谷氨酸可能在Zn(+)诱导的新生大鼠脊髓缓慢腹根电位增强中起重要作用。