Wiet Gregory J, Schmalbrock Petra, Powell Kimerly, Stredney Don
Department of Otolaryngology, Children's Hospital, Columbus, Ohio 43205, USA.
Otolaryngol Head Neck Surg. 2005 Dec;133(6):911-5. doi: 10.1016/j.otohns.2005.05.655.
For the past 5 years, our group has been developing a virtual temporal bone dissection environment for training otologic surgeons. Throughout the course of our development, a recurring challenge is the acquisition of high-resolution, multimodal, and multi-scale data sets that are used for the visual as well as haptic (sense of touch) display. This study presents several new techniques in temporal bone imaging and their use as data for surgical simulation.
At our institution (OSU), we are fortunate to have a high-field (8 Tesla) magnetic resonance imaging (MRI) research magnet that provides an order of magnitude higher resolution compared to clinical 1.5T MRI scanners. Magnetic resonance imaging has traditionally been superb at delineating soft tissue structure, and certainly, the 8T unit does indeed do this at a resolution of 100-200 microm(3). To delineate the bony structure of the mastoid and middle ear, computed tomography (CT) has traditionally been used because of the high signal-to-noise ratio delineating bone signal from air and soft tissue. We have partnered with researchers at other institutions (CCF) to make use of a "microCT" that provides a resolution of 214 x 214 x 390 micrometers of bony structure.
This report provides a description of the 2 methodologies and presentation of the striking image data capable of being generated. See images presented.
Using these 2 new and innovative imaging modalities, we provide an order of magnitude greater resolution to the visual and haptic display in our temporal bone dissection simulation environment.
在过去5年里,我们团队一直在开发一种用于培训耳科外科医生的虚拟颞骨解剖环境。在整个开发过程中,一个反复出现的挑战是获取用于视觉以及触觉(触觉感知)显示的高分辨率、多模态和多尺度数据集。本研究介绍了颞骨成像中的几种新技术及其作为手术模拟数据的用途。
在我们的机构(俄亥俄州立大学),我们有幸拥有一台高场(8特斯拉)磁共振成像(MRI)研究磁体,与临床1.5T MRI扫描仪相比,其分辨率提高了一个数量级。传统上,磁共振成像在描绘软组织结构方面表现出色,当然,8T设备确实能以100 - 200微米³的分辨率做到这一点。为了描绘乳突和中耳的骨结构,传统上使用计算机断层扫描(CT),因为其在区分骨信号与空气和软组织方面具有高信噪比。我们与其他机构(克利夫兰诊所基金会)的研究人员合作,利用一种“微型CT”,其能提供分辨率为214×214×390微米的骨结构图像。
本报告描述了这两种方法,并展示了能够生成的引人注目的图像数据。见所展示的图像。
使用这两种新的创新成像方式,我们在颞骨解剖模拟环境中为视觉和触觉显示提供了一个数量级更高的分辨率。