Seitz Russell, Raymond John C, Kissel Jochen, Petaev Michail I
Naturwissenschaften. 2006 Feb;93(2):88-91. doi: 10.1007/s00114-005-0067-9. Epub 2006 Feb 1.
Minerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed "metamict." They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space. Below roughly 100 K, reduced vacancy mobility allows cosmic ray and solar wind induced lattice defects to endure and accumulate for eons, reaching energy densities of up to MJ kg(-1) in some materials. We examine the possible effects of the release of energy stored in cold deep-space materials when solid-state defects recombine upon warming due to impacts, gravitational infall, or perihelion. Dimensional analysis suggests energetic defect recombination in radiation-damaged "xenomict" solids in comets, and planetesimals may, in some circumstances, raise internal temperatures enough to melt ice and volatilize frozen gases. We speculate that this may account for some cometary outbursts and Deep Impact experiment results. Calorimetric experiments on appropriately irradiated natural and synthetic materials are needed to further quantify these mechanisms.
地球上那些因所含原子的放射性衰变而使其晶体有序性降低的矿物质被称为“变晶质”。它们很稀少,因为在大多数晶体固体中,原子和空位在地球温度下相对可移动,并且辐射损伤往往会自我退火。在深太空的极端寒冷环境中情况则并非如此。在大约100K以下,空位迁移率降低使得宇宙射线和太阳风诱发的晶格缺陷得以持续存在并积累数十亿年,在某些材料中能量密度可达MJ kg(-1)。我们研究了在因撞击、引力坍缩或近日点导致升温时,冷的深太空材料中储存的能量在固态缺陷复合时可能产生的影响。量纲分析表明,彗星和小行星中辐射损伤的“异晶质”固体中的高能缺陷复合在某些情况下可能会使内部温度升高到足以融化冰并使冷冻气体挥发的程度。我们推测这可能解释了一些彗星爆发和深度撞击实验的结果。需要对经过适当辐照的天然和合成材料进行量热实验,以进一步量化这些机制。