Tan Ming-Liang, Kang ChulHee, Ichiye Toshiko
Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
Proteins. 2006 Mar 15;62(3):708-14. doi: 10.1002/prot.20806.
Rubredoxins may be separated into high and low reduction potential classes, with reduction potentials differing by approximately 50 mV. Our previous work showed that a local shift in the polar backbone due to an A(44) versus V(44) side-chain size causes this reduction potential difference. However, this work also indicated that in the low potential Clostridium pasteurianum (Cp) rubredoxin, a V(44) --> A(44) mutation causes larger local backbone flexibility, because the V(44) side-chain present in the wild-type (wt) is no longer present to interlock with neighboring residues to stabilize the subsequent G(45). Since Pyrococcus furiosus (Pf) and other high potential rubredoxins generally have a P(45), it was presumed that a G(45) --> P(45) mutation might stabilize a V(44) --> A(44) mutation in Cp rubredoxin. Here crystal structure analysis, energy minimization, and molecular dynamics (MD) were performed for wt V(44)G(45), single mutant A(44)G(45) and double mutant A(44)P(45) Cp, and for wt A(44)P(45) Pf rubredoxins. The local structural, dynamical, and electrostatic properties of Cp gradually approach wt Pf in the order wt Cp to single to double mutant because of greater sequence similarity, as expected. The double mutant A(44)P(45) Cp exhibits increased backbone stability near residue 44 and thus enhances the probability that the backbone dipoles point toward the redox site, which favors an increase in the electrostatic contribution to the reduction potential. It appears that the electrostatic potential of residue 44 and the solvent accessibility to the redox are both determinants for the reduction potentials of homologous rubredoxins. Overall, these results indicate that an A(44) in a rubredoxin may require a P(45) for backbone stability whereas a V(44) can accommodate a G(45), since the valine side-chain can interlock with its neighbors.
红素氧还蛋白可分为高还原电位和低还原电位两类,其还原电位相差约50毫伏。我们之前的研究表明,由于A(44)与V(44)侧链大小导致的极性主链局部变化引起了这种还原电位差异。然而,这项研究还表明,在低电位的巴氏梭菌(Cp)红素氧还蛋白中,V(44)→A(44)突变会导致更大的局部主链灵活性,因为野生型(wt)中存在的V(44)侧链不再存在,无法与相邻残基互锁以稳定后续的G(45)。由于嗜热栖热菌(Pf)和其他高电位红素氧还蛋白通常有一个P(45),因此推测G(45)→P(45)突变可能会稳定Cp红素氧还蛋白中的V(44)→A(44)突变。在此,对野生型V(44)G(45)、单突变体A(44)G(45)和双突变体A(44)P(45) Cp以及野生型A(44)P(45) Pf红素氧还蛋白进行了晶体结构分析、能量最小化和分子动力学(MD)研究。正如预期的那样,由于序列相似性更高,Cp的局部结构、动力学和静电性质按野生型Cp到单突变体再到双突变体的顺序逐渐接近野生型Pf。双突变体A(44)P(45) Cp在残基44附近表现出增加的主链稳定性,从而提高了主链偶极指向氧化还原位点的概率,这有利于增加对还原电位的静电贡献。看来残基44的静电势和氧化还原位点的溶剂可及性都是同源红素氧还蛋白还原电位的决定因素。总体而言,这些结果表明,红素氧还蛋白中的A(44)可能需要P(45)来维持主链稳定性,而V(44)可以容纳G(45),因为缬氨酸侧链可以与其相邻残基互锁。