Suppr超能文献

铁硫蛋白中氧化还原电位的结构起源:晶体结构的静电势

Structural origins of redox potentials in Fe-S proteins: electrostatic potentials of crystal structures.

作者信息

Swartz P D, Beck B W, Ichiye T

机构信息

Center for Bioengineering, University of Washington, Seattle 98195-1750, USA.

出版信息

Biophys J. 1996 Dec;71(6):2958-69. doi: 10.1016/S0006-3495(96)79533-4.

Abstract

Redox potentials often differ dramatically for homologous proteins that have identical redox centers. For two types of iron-sulfur proteins, the rubredoxins and the high-potential iron-sulfur proteins (HiPIPs), no structural explanations for these differences have been found. We calculated the classical electrostatic potential at the redox site using static crystal structures of four rubredoxins and four HiPIPs to identify important structural determinants of their redox potentials. The contributions from just the backbone and polar side chains are shown to explain major features of the experimental redox potentials. For instance, in the rubredoxins, the presence of Val 44 versus Ala 44 causes a backbone shift that explains a approximately 50 mV lower redox potential in one of the four rubredoxins. This result is consistent with experimental redox potentials of five additional rubredoxins with known sequence. Also, we attribute the unusually lower redox potentials of two of the HiPIPs studied to a less positive electrostatic environment around their redox sites. Finally, molecular dynamics simulations of solvent around static rubredoxin crystal structures indicate that water alone is a major factor in dampening the contribution of charged side chains, in accord with experiments showing that mutations of surface charges produce relatively little effect on redox potentials.

摘要

对于具有相同氧化还原中心的同源蛋白质,其氧化还原电位往往存在显著差异。对于两种类型的铁硫蛋白,即红素氧还蛋白和高电位铁硫蛋白(HiPIPs),尚未找到关于这些差异的结构解释。我们利用四种红素氧还蛋白和四种HiPIPs的静态晶体结构计算了氧化还原位点处的经典静电势,以确定其氧化还原电位的重要结构决定因素。结果表明,仅主链和极性侧链的贡献就能解释实验氧化还原电位的主要特征。例如,在红素氧还蛋白中,44位的缬氨酸(Val)与丙氨酸(Ala)的存在导致主链移位,这解释了四种红素氧还蛋白之一中氧化还原电位大约低50 mV的原因。这一结果与另外五种已知序列的红素氧还蛋白的实验氧化还原电位一致。此外,我们将所研究的两种HiPIPs异常低的氧化还原电位归因于其氧化还原位点周围较不呈正电的静电环境。最后,对静态红素氧还蛋白晶体结构周围溶剂的分子动力学模拟表明,仅水就是减弱带电侧链贡献的主要因素,这与实验结果相符,即表面电荷的突变对氧化还原电位的影响相对较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff8b/1233786/53554031bf7e/biophysj00042-0049-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验