Hong Jiang, Capp Mike W, Saecker Ruth M, Record M Thomas
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
Biochemistry. 2005 Dec 27;44(51):16896-911. doi: 10.1021/bi0515218.
Thermodynamic analysis of urea-biopolymer interactions and effects of urea on folding of proteins and alpha-helical peptides shows that urea interacts primarily with polar amide surface. Urea is therefore predicted to be a quantitative probe of coupled folding, remodeling, and other large-scale changes in the amount of water-accessible polar amide surface in protein processes. A parallel analysis indicates that glycine betaine [N,N,N-trimethylglycine (GB)] can be used to detect burial or exposure of anionic (carboxylate, phosphate) biopolymer surface. To test these predictions, we have investigated the effects of these solutes (0-3 m) on the formation of 1:1 complexes between lac repressor (LacI) and its symmetric operator site (SymL) at a constant KCl molality. Urea reduces the binding constant K(TO) [initial slope dlnK(TO)/dm(urea) = -1.7 +/- 0.2], and GB increases K(TO) [initial slope dlnK(TO)/dm(GB) = 2.1 +/- 0.2]. For both solutes, this derivative decreases with an increase in solute concentration. Analysis of these initial slopes predicts that (1.5 +/- 0.3) x 10(3) A2 of polar amide surface and (4.5 +/- 1.0) x 10(2) A2 of anionic surface are buried in the association process. Analysis of published structural data, together with modeling of unfolded regions of free LacI as extended chains, indicates that 1.5 x 10(3) A2 of polar amide surface and 6.3 x 10(2) A2 of anionic surface are buried in complexation. Quantitative agreement between structural and thermodynamic results is obtained for amide surface (urea); for anionic surface (GB), the experimental value is approximately 70% of the structural value. For LacI-SymL binding, two-thirds of the structurally predicted change in amide surface (1.0 x 10(3) A2) occurs outside the protein-DNA interface in protein-protein interfaces formed by folding of the hinge helices and interactions of the DNA binding domain (DBD) with the core of the repressor. Since urea interacts principally with amide surface, it is particularly well-suited to detect and quantify the extent of coupled folding and other large-scale remodeling events in the steps of protein-nucleic acid interactions and other protein associations.
尿素与生物聚合物相互作用的热力学分析以及尿素对蛋白质和α-螺旋肽折叠的影响表明,尿素主要与极性酰胺表面相互作用。因此,预计尿素可作为蛋白质过程中耦合折叠、重塑以及水可及极性酰胺表面量的其他大规模变化的定量探针。平行分析表明,甘氨酸甜菜碱[N,N,N-三甲基甘氨酸(GB)]可用于检测阴离子(羧酸盐、磷酸盐)生物聚合物表面的掩埋或暴露情况。为了验证这些预测,我们研究了这些溶质(0至3 m)在恒定KCl质量摩尔浓度下对乳糖阻遏蛋白(LacI)与其对称操纵位点(SymL)之间1:1复合物形成的影响。尿素降低结合常数K(TO) [初始斜率dlnK(TO)/dm(尿素) = -1.7 +/- 0.2],而GB增加K(TO) [初始斜率dlnK(TO)/dm(GB) = 2.1 +/- 0.2]。对于这两种溶质,该导数随溶质浓度增加而降低。对这些初始斜率的分析预测,在缔合过程中掩埋了(1.5 +/- 0.3) x 10(3) A2的极性酰胺表面和(4.5 +/- 1.0) x 10(2) A2的阴离子表面。对已发表结构数据的分析,以及将游离LacI的未折叠区域建模为伸展链,表明在络合过程中掩埋了1.5 x 10(3) A2的极性酰胺表面和6.3 x 10(2) A2的阴离子表面。对于酰胺表面(尿素),结构和热力学结果获得了定量一致性;对于阴离子表面(GB),实验值约为结构值的70%。对于LacI-SymL结合,酰胺表面结构预测变化的三分之二(1.0 x 10(3) A2)发生在蛋白质-DNA界面之外,即在由铰链螺旋折叠以及DNA结合结构域(DBD)与阻遏蛋白核心相互作用形成的蛋白质-蛋白质界面中。由于尿素主要与酰胺表面相互作用,它特别适合检测和量化蛋白质-核酸相互作用及其他蛋白质缔合步骤中耦合折叠和其他大规模重塑事件的程度。