Kim Young B, Kopcho Lisa M, Kirby Mark S, Hamann Lawrence G, Weigelt Carolyn A, Metzler William J, Marcinkeviciene Jovita
Department of Chemical Enzymology, Bristol Myers-Squibb Pharmaceutical Company, Pharmaceutical Research Institute, P.O. Box 5400, Princeton, NJ 08543-5400, USA.
Arch Biochem Biophys. 2006 Jan 1;445(1):9-18. doi: 10.1016/j.abb.2005.11.010. Epub 2005 Dec 5.
Dipeptidyl peptidase-IV (DPP-IV) is a serine protease with a signature Asp-His-Ser motif at the active site. Our pH data suggest that Gly-Pro-pNA cleavage catalyzed by DPP-IV is facilitated by an ionization of a residue with a pK of 7.2 +/- 0.1. By analogy to other serine proteases this pK is suggestive of His-Asp assisted Ser addition to the P1 carbonyl carbon of the substrate to form a tetrahedral intermediate. Solvent kinetic isotope effect studies yielded a D2Okcat/Km=2.9+/-0.2 and a D2Okcat=1.7+/-0.2 suggesting that kinetically significant proton transfers contribute to rate limitation during acyl intermediate formation (leaving group release) and hydrolysis. A "burst" of product release during pre steady-state Gly-Pro-pNA cleavage indicated rate limitation in the deacylation half-reaction. Nevertheless, the amplitude of the burst exceeded the enzyme concentration significantly (approximately 15-fold), which is consistent with a branching deacylation step. All of these data allowed us to better understand DPP-IV inhibition by saxagliptin (BMS-477118). We propose a two-step inhibition mechanism wherein an initial encounter complex is followed by covalent intermediate formation. Final inhibitory complex assembly (kon) depends upon the ionization of an enzyme residue with a pK of 6.2 +/- 0.1, and we assigned it to the catalytic His-Asp pair which enhances Ser nucleophilicity for covalent addition. An ionization with a pK of 7.9 +/- 0.2 likely reflects the P2 terminal amine of the inhibitor hydrogen bonding to Glu205/Glu206 in the enzyme active site. The formation of the covalent enzyme-inhibitor complex was reversible and dissociated with a koff of (5.5 +/- 0.4) x 10(-5) s(-1), thus yielding a Ki* (as koff/kon) of 0.35 nM, which is in good agreement with the value of 0.6 nM obtained from steady-state inhibition studies. Proton NMR spectra of DPP-IV showed a downfield resonance at 16.1 ppm. Two additional peaks in the 1H NMR spectra at 17.4 and 14.1 ppm were observed upon mixing the enzyme with saxagliptin. Fractionation factors (phi) of 0.6 and 0.5 for the 17.4 and 14.1 ppm peaks, respectively, are suggestive of short strong hydrogen bonds in the enzyme-inhibitor complex.
二肽基肽酶-IV(DPP-IV)是一种丝氨酸蛋白酶,其活性位点具有标志性的天冬氨酸-组氨酸-丝氨酸基序。我们的pH数据表明,DPP-IV催化的甘氨酰-脯氨酰-对硝基苯胺(Gly-Pro-pNA)裂解是由一个pK为7.2±0.1的残基的电离所促进的。与其他丝氨酸蛋白酶类似,这个pK表明组氨酸-天冬氨酸协助丝氨酸添加到底物的P1羰基碳上,形成四面体中间体。溶剂动力学同位素效应研究得出D2O时的kcat/Km = 2.9±0.2以及D2O时的kcat = 1.7±0.2,这表明在酰基中间体形成(离去基团释放)和水解过程中,具有动力学意义的质子转移对速率限制有贡献。在预稳态甘氨酰-脯氨酰-对硝基苯胺裂解过程中产物释放的“爆发”表明脱酰基半反应存在速率限制。然而,爆发的幅度显著超过酶浓度(约15倍),这与分支脱酰基步骤一致。所有这些数据使我们能够更好地理解沙格列汀(BMS-477118)对DPP-IV的抑制作用。我们提出了一种两步抑制机制,其中首先形成初始的相遇复合物,随后形成共价中间体。最终抑制复合物的组装(kon)取决于一个pK为6.2±0.1的酶残基的电离,我们将其归因于催化性的组氨酸-天冬氨酸对,它增强了丝氨酸对共价加成的亲核性。一个pK为7.9±0.2的电离可能反映了抑制剂的P2末端胺与酶活性位点中的Glu205/Glu206形成氢键。共价酶-抑制剂复合物的形成是可逆的,解离的koff为(5.5±0.4)×10(-5) s(-1),因此得出的Ki*(作为koff/kon)为0.35 nM,这与稳态抑制研究得到的0.6 nM的值非常一致。DPP-IV的质子核磁共振谱在16.1 ppm处显示出一个低场共振。将酶与沙格列汀混合后,在1H核磁共振谱中还观察到17.4和14.1 ppm处的另外两个峰。17.4和14.1 ppm峰的分级因子(phi)分别为0.6和0.5,这表明酶-抑制剂复合物中存在短的强氢键。