Suppr超能文献

场流分级中仪器板高的几何缩放效应

Geometric scaling effects on instrumental plate height in field flow fractionation.

作者信息

Sant Himanshu J, Gale Bruce K

机构信息

Utah State Center for Biomedical Microfluidics, Department of Bioengineering, University of Utah, 50 S. Central Campus Drive, Rm#2480, Salt Lake City, UT 84112, USA.

出版信息

J Chromatogr A. 2006 Feb 3;1104(1-2):282-90. doi: 10.1016/j.chroma.2005.11.127. Epub 2005 Dec 20.

Abstract

This paper examines geometric scaling models for field flow fractionation systems to understand how channel dimensions affect resolution and retention. Specifically, the changing contribution of the instrumental plate height during miniaturization of field flow fractionation (FFF) systems is reported. The work is directed towards determining the optimal geometrical parameters for miniaturization of field flow fractionation systems. The experimental relationship between channel height in FFF systems and instrumental plate heights is reported. FFF scaling models are modified to: (i) better clarify the dependence of plate height and resolution on channel height in FFF and (ii) include a more complete geometrical scaling analysis and model comparison in the low retention regime. Electrical field flow fractionation has been shown to benefit from miniaturization, so this paper focuses on that subtype, but surprisingly, the results also indicate the possibility of improvement in performance with miniaturization of other field flow fractionation systems including general FFF subtypes in which the applied field does not vary with channel height. This paper also discusses the potential role of more powerful microscale field flow fractionation systems as a new class of sample preparation units for micro-total-analysis systems (mu-TAS).

摘要

本文研究了场流分级系统的几何缩放模型,以了解通道尺寸如何影响分离度和保留时间。具体而言,报告了在场流分级(FFF)系统小型化过程中仪器板高的变化贡献。这项工作旨在确定场流分级系统小型化的最佳几何参数。报告了FFF系统中通道高度与仪器板高之间的实验关系。对FFF缩放模型进行了修改,以:(i)更好地阐明FFF中板高和分离度对通道高度的依赖性,以及(ii)在低保留区域进行更完整的几何缩放分析和模型比较。电场流分级已被证明可从小型化中受益,因此本文重点关注该亚型,但令人惊讶的是,结果还表明,包括应用场不随通道高度变化的一般FFF亚型在内的其他场流分级系统,其性能也有可能因小型化而得到改善。本文还讨论了更强大的微尺度场流分级系统作为微全分析系统(μ-TAS)新型样品制备单元的潜在作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验