Nevill Alan M, Bate Stuart, Holder Roger L
Research Institute of Healthcare Sciences, University of Wolverhampton, Walsall WS1 3BD, UK.
Am J Phys Anthropol. 2005;Suppl 41:141-53. doi: 10.1002/ajpa.20356.
This review explores the most appropriate methods of identifying population differences in physiological and anthropometric variables known to differ with body size and other confounding variables. We shall provide an overview of such problems from a historical point of view. We shall then give some guidelines as to the choice of body-size covariates as well as other confounding variables, and show how these might be incorporated into the model, depending on the physiological dependent variable and the nature of the population being studied. We shall also recommend appropriate goodness-of-fit statistics that will enable researchers to confirm the most appropriate choice of model, including, for example, how to compare proportional allometric models with the equivalent linear or additive polynomial models. We shall also discuss alternative body-size scaling variables (height, fat-free mass, body surface area, and projected area of skeletal bone), and whether empirical vs. theoretical scaling methodologies should be reported. We shall offer some cautionary advice (limitations) when interpreting the parameters obtained when fitting proportional power function or allometric models, due to the fact that human physiques are not geometrically similar to each other. In conclusion, a variety of different models will be identified to describe physiological and anthropometric variables known to vary with body size and other confounding variables. These include simple ratio standards (e.g., per body mass ratios), linear and additive polynomial models, and proportional allometric or power function models. Proportional allometric models are shown to be superior to either simple ratio standards or linear and additive polynomial models for a variety of different reasons. These include: 1) providing biologically interpretable models that yield sensible estimates within and beyond the range of data; and 2) providing a superior fit based on the Akaike information criterion (AIC), Bayes information criterion (BIC), or maximum log-likelihood criteria (resulting in a smaller error variance). As such, these models will also: 3) naturally lead to a more powerful analysis-of-covariance test of significance, which will 4) subsequently lead to more correct conclusions when investigating population (epidemiological) or experimental differences in physiological and anthropometric variables known to vary with body size.
本综述探讨了识别生理和人体测量变量中人群差异的最合适方法,这些变量已知会因体型和其他混杂变量而有所不同。我们将从历史角度概述此类问题。然后,我们将给出一些关于体型协变量以及其他混杂变量选择的指导方针,并展示根据生理因变量和所研究人群的性质,如何将这些变量纳入模型。我们还将推荐合适的拟合优度统计量,使研究人员能够确认模型的最合适选择,包括例如如何将比例异速生长模型与等效的线性或加性多项式模型进行比较。我们还将讨论替代的体型缩放变量(身高、去脂体重、体表面积和骨骼投影面积),以及是否应报告经验性与理论性缩放方法。在解释拟合比例幂函数或异速生长模型时获得的参数时,由于人体体型彼此并非几何相似,我们将给出一些警示性建议(局限性)。总之,将确定各种不同模型来描述已知随体型和其他混杂变量而变化的生理和人体测量变量。这些模型包括简单比率标准(例如,每体重比率)、线性和加性多项式模型以及比例异速生长或幂函数模型。出于各种不同原因,比例异速生长模型被证明优于简单比率标准或线性和加性多项式模型。这些原因包括:1)提供具有生物学可解释性的模型,在数据范围内外都能产生合理估计;2)基于赤池信息准则(AIC)、贝叶斯信息准则(BIC)或最大对数似然准则提供更好的拟合(导致较小的误差方差)。因此,这些模型还将:3)自然地导致更强大的协方差分析显著性检验,这将4)随后在调查已知随体型变化的生理和人体测量变量的人群(流行病学)或实验差异时得出更正确的结论。