Suppr超能文献

使用基因俱乐部方法从微阵列基因表达数据中发现高度分化的基因组。

Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach.

作者信息

Mao Shihong, Dong Guozhu

机构信息

Department of Computer Science and Engineering, Wright State University, USA.

出版信息

J Bioinform Comput Biol. 2005 Dec;3(6):1263-80. doi: 10.1142/s0219720005001545.

Abstract

MOTIVATION

It is commonly believed that suitable analysis of microarray gene expression profile data can lead to better understanding of diseases, and better ways to diagnose and treat diseases. To achieve those goals, it is of interest to discover the gene interaction networks, and perhaps even pathways, underlying given diseases from such data. In this paper, we consider methods for efficiently discovering highly differentiative gene groups (HDGG), which may provide insights on gene interaction networks. HDGGs are groups of genes which completely or nearly completely characterize the diseased or normal tissues. Discovering HDGGs is challenging, due to the high dimensionality of the data.

RESULTS

Our methods are based on the novel concept of gene clubs. A gene club consists of a set of genes having high potential to be interactive with each other. The methods can (i) efficiently discover signature HDGGs which completely characterize the diseased and the normal tissues respectively, (ii) find strongest or near strongest HDGGs containing any given gene, and (iii) find much stronger HDGGs than previous methods. As part of the experimental evaluation, the methods are applied to colon, prostate, ovarian, and breast cancer, and leukemia and so on. Some of the genes in the extracted signature HDGGs have known biological functions, and some have attracted little attention in biology and medicine. We hope that appropriate study on them can lead to medical breakthroughs. Some HDGGs for colon and prostate cancers are listed here. The website listed below contains HDGGs for the other cancers.

AVAILABILITY

HDGG is implemented in C++ and runs on Unix or Windows platform. The code is available at: http://www.cs.wright.edu/~gdong/hdgg/.

摘要

动机

人们普遍认为,对微阵列基因表达谱数据进行适当分析有助于更好地理解疾病,以及找到更好的疾病诊断和治疗方法。为实现这些目标,从此类数据中发现特定疾病背后的基因相互作用网络甚至可能的通路很有意义。在本文中,我们考虑了有效发现高差异基因组(HDGG)的方法,这些基因组可能为基因相互作用网络提供见解。HDGG是能完全或几乎完全表征患病或正常组织的基因组。由于数据的高维度性,发现HDGG具有挑战性。

结果

我们的方法基于基因俱乐部这一新颖概念。基因俱乐部由一组具有高度相互作用潜力的基因组成。这些方法能够:(i)有效发现分别完全表征患病和正常组织的特征性HDGG;(ii)找到包含任何给定基因的最强或接近最强的HDGG;(iii)找到比以前方法更强得多的HDGG。作为实验评估的一部分,这些方法被应用于结肠癌、前列腺癌、卵巢癌、乳腺癌以及白血病等。提取的特征性HDGG中的一些基因具有已知的生物学功能,而一些在生物学和医学领域很少受到关注。我们希望对它们进行适当研究能带来医学突破。这里列出了一些结肠癌和前列腺癌的HDGG。下面列出的网站包含其他癌症的HDGG。

可用性

HDGG用C++实现,可在Unix或Windows平台上运行。代码可从以下网址获取:http://www.cs.wright.edu/~gdong/hdgg/

相似文献

1
Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach.
J Bioinform Comput Biol. 2005 Dec;3(6):1263-80. doi: 10.1142/s0219720005001545.
2
LS Bound based gene selection for DNA microarray data.
Bioinformatics. 2005 Apr 15;21(8):1559-64. doi: 10.1093/bioinformatics/bti216. Epub 2004 Dec 14.
3
Empirical Bayes screening of many p-values with applications to microarray studies.
Bioinformatics. 2005 May 1;21(9):1987-94. doi: 10.1093/bioinformatics/bti301. Epub 2005 Feb 2.
5
A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
Comput Biol Med. 2015 Dec 1;67:29-40. doi: 10.1016/j.compbiomed.2015.07.029. Epub 2015 Aug 14.
6
A spline function approach for detecting differentially expressed genes in microarray data analysis.
Bioinformatics. 2004 Nov 22;20(17):2954-63. doi: 10.1093/bioinformatics/bth339. Epub 2004 Jun 4.
7
A Gibbs sampler for the identification of gene expression and network connectivity consistency.
Bioinformatics. 2006 Dec 15;22(24):3040-6. doi: 10.1093/bioinformatics/btl541. Epub 2006 Oct 23.
8
Extracting three-way gene interactions from microarray data.
Bioinformatics. 2007 Nov 1;23(21):2903-9. doi: 10.1093/bioinformatics/btm482. Epub 2007 Oct 5.
9
Avoiding model selection bias in small-sample genomic datasets.
Bioinformatics. 2006 May 15;22(10):1245-50. doi: 10.1093/bioinformatics/btl066. Epub 2006 Feb 24.
10
Large scale data mining approach for gene-specific standardization of microarray gene expression data.
Bioinformatics. 2006 Dec 1;22(23):2898-904. doi: 10.1093/bioinformatics/btl500. Epub 2006 Oct 10.

引用本文的文献

1
Analysis of differential gene expression by bead-based fiber-optic array in growth-hormone-secreting pituitary adenomas.
Exp Ther Med. 2010 Sep;1(5):905-910. doi: 10.3892/etm.2010.137. Epub 2010 Jul 21.
2
Analysis of differential gene expression in plurihormonal pituitary adenomas using bead-based fiber-optic arrays.
J Neurooncol. 2012 Jul;108(3):341-8. doi: 10.1007/s11060-011-0792-1. Epub 2012 May 16.
3
Analysis of differential gene expression by fiber-optic BeadArray and pathway in prolactinomas.
Endocrine. 2010 Dec;38(3):360-8. doi: 10.1007/s12020-010-9389-2. Epub 2010 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验