Wette Patrick, Schöpe Hans Joachim, Palberg Thomas
Institut für Physik, Johannes Gutenberg Universität Mainz, Kondensierte Materie in Experiment und Theorie 336, Staudinger Weg 7, D-55128 Mainz, Germany.
J Chem Phys. 2005 Nov 1;123(17):174902. doi: 10.1063/1.2075047.
We studied the homogeneous nucleation kinetics of an aqueous suspension of charged colloidal spheres under de-ionized conditions. Samples of equilibrium crystalline structure were shear molten and the metastable melt left to solidify after cessation of shear. At low particle number densities n, corresponding to low metastability of the melt, nucleation was monitored directly via video microscopy. We determined the nucleation rates gamma(t) by counting the number of newly appearing crystals in the observation volume per unit time. Using a suitable discrete adaptation of Avrami's [J. Chem. Phys. 7, 1003 (1939); ibid.8, 212 (1940); ibid.9, 177 (1941)] model for solidification via homogeneous nucleation and subsequent growth, we calculate the remaining free volume VF(t) to obtain the rate densities J(t) = gamma(t)/VF(t). We observe J(t) to rise steeply, display a plateau at a maximum rate density Jmax, and to decrease again. With increased n the plateau duration shrinks while Jmax increases. At low to moderate number densities fully solidified samples were analyzed by microscopy to obtain the grain-size distribution and the average crystallite size angle brackets(L). Under the assumption of stationarity, we obtained the nucleation rate density J(Avr), which increased strongly with increasing n. Interestingly, J(Avr) agrees quantitatively to Jmax and to J(Avr) as obtained previously from scattering data taken on the same sample at large n. Thus, by combination of different methods, reliable nucleation rate densities are now available over roughly one order of magnitude in n and eight orders of magnitude in J.
我们研究了去离子条件下带电胶体球水悬浮液的均相成核动力学。将平衡晶体结构的样品进行剪切熔融,停止剪切后让亚稳态熔体凝固。在低粒子数密度(n)下,对应熔体的低亚稳性,通过视频显微镜直接监测成核过程。我们通过计算单位时间内观察体积中新出现晶体的数量来确定成核速率(\gamma(t))。使用阿弗拉米[《化学物理杂志》7, 1003 (1939); 同上8, 212 (1940); 同上9, 177 (1941)]模型的合适离散形式,用于通过均相成核及后续生长的凝固过程,我们计算剩余自由体积(V_F(t))以获得速率密度(J(t)=\gamma(t)/V_F(t))。我们观察到(J(t))急剧上升,在最大速率密度(J_{max})处呈现一个平台期,然后再次下降。随着(n)的增加,平台期持续时间缩短而(J_{max})增加。在低至中等数量密度下,通过显微镜分析完全凝固的样品以获得晶粒尺寸分布和平均微晶尺寸(\langle L\rangle)。在平稳性假设下,我们获得了成核速率密度(J_{(Avr)}),它随着(n)的增加而强烈增加。有趣的是,(J_{(Avr)})在数量上与(J_{max})以及之前在大(n)时对同一样品进行散射数据所得到的(J_{(Avr)})一致。因此,通过不同方法的结合,现在在(n)的大约一个数量级和(J)的八个数量级范围内可获得可靠的成核速率密度。