Suppr超能文献

生物大分子光化学固定修饰的聚(丙交酯-乙交酯)表面上3T3成纤维细胞的黏附接触动力学

Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycolide acid) surface modified by photochemical immobilization of biomacromolecules.

作者信息

Zhu Ai Ping, Fang Ning, Chan-Park Mary B, Chan Vincent

机构信息

The Biological and Chemical Process Engineering Laboratory, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.

出版信息

Biomaterials. 2006 Apr;27(12):2566-76. doi: 10.1016/j.biomaterials.2005.11.039. Epub 2005 Dec 20.

Abstract

A simple and effective method of biomacromolecule immobilization on biomaterial surface for direct tuning of biophysical parameters such as the initial cell deformation rate, degree of cell spreading and adhesion kinetics is important for tissue engineering. The photochemical immobilization of azide-chitosan (Az-CS) on poly (lactide-co-glycolide) acid (PLGA) is applied here. Chitosan immobilization on PLGA through the photoactive azide group further facilitates subsequent grafting of other biocompatible biomacromolecules like gelatin (Gel) through the active amine groups on CS. This study quantitatively compares the 3T3 fibroblast adhesion dynamics on three PLGA surfaces (Gel-CS-PLGA, CS-PLGA and unmodified PLGA surfaces) using Confocal-Reflectance Interference Contrast Microscopy (C-RICM) together with phase contrast imaging. CS-PLGA and Gel-CS-PLGA surfaces developed were confirmed by X-ray photoelectron spectroscopy, atomic force microscopy and water contact angle and cell adhesion contact dynamics measurements. The cell adhesion was strongest on the Gel-CS-PLGA surface and lowest on unmodified PLGA. The steady state adhesion energy attained by the cells on gelatin modified PLGA surface is determined as 4.0 x 10(-8) J/m(2), which is about 400 times higher than that on PLGA surface (1.1 x 10(-10) J/m(2)). Significantly increased cell adhesion with Gel-CS-PLGA is postulated to result in increased cell spreading. Our integrated biophysical method can quantify the transient contact dynamics and is sufficiently accurate to discriminate even between Gel and CS modified surfaces.

摘要

一种将生物大分子固定在生物材料表面以直接调节生物物理参数(如初始细胞变形率、细胞铺展程度和黏附动力学)的简单有效方法对组织工程很重要。本文采用了将叠氮壳聚糖(Az-CS)光化学固定在聚(丙交酯-共-乙交酯)酸(PLGA)上的方法。通过光活性叠氮基团将壳聚糖固定在PLGA上,进一步促进了后续通过壳聚糖上的活性胺基团接枝其他生物相容性生物大分子,如明胶(Gel)。本研究使用共聚焦反射干涉对比显微镜(C-RICM)结合相差成像,定量比较了3T3成纤维细胞在三种PLGA表面(Gel-CS-PLGA、CS-PLGA和未修饰的PLGA表面)上的黏附动力学。通过X射线光电子能谱、原子力显微镜、水接触角和细胞黏附接触动力学测量,对所制备的CS-PLGA和Gel-CS-PLGA表面进行了确认。细胞在Gel-CS-PLGA表面的黏附最强,在未修饰的PLGA表面最低。细胞在明胶修饰的PLGA表面达到的稳态黏附能确定为4.0×10^(-8) J/m²,这比在PLGA表面(1.1×10^(-10) J/m²)高约400倍。推测Gel-CS-PLGA显著增加的细胞黏附会导致细胞铺展增加。我们的综合生物物理方法可以量化瞬态接触动力学,并且足够准确,甚至能够区分Gel和CS修饰的表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验