Suppr超能文献

微小RNA-1和微小RNA-133在骨骼肌增殖与分化中的作用。

The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.

作者信息

Chen Jian-Fu, Mandel Elizabeth M, Thomson J Michael, Wu Qiulian, Callis Thomas E, Hammond Scott M, Conlon Frank L, Wang Da-Zhi

机构信息

Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina Chapel Hill, North Carolina 27599, USA.

出版信息

Nat Genet. 2006 Feb;38(2):228-33. doi: 10.1038/ng1725. Epub 2005 Dec 25.

Abstract

Understanding the molecular mechanisms that regulate cellular proliferation and differentiation is a central theme of developmental biology. MicroRNAs (miRNAs) are a class of regulatory RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression. Increasing evidence points to the potential role of miRNAs in various biological processes. Here we show that miRNA-1 (miR-1) and miRNA-133 (miR-133), which are clustered on the same chromosomal loci, are transcribed together in a tissue-specific manner during development. miR-1 and miR-133 have distinct roles in modulating skeletal muscle proliferation and differentiation in cultured myoblasts in vitro and in Xenopus laevis embryos in vivo. miR-1 promotes myogenesis by targeting histone deacetylase 4 (HDAC4), a transcriptional repressor of muscle gene expression. By contrast, miR-133 enhances myoblast proliferation by repressing serum response factor (SRF). Our results show that two mature miRNAs, derived from the same miRNA polycistron and transcribed together, can carry out distinct biological functions. Together, our studies suggest a molecular mechanism in which miRNAs participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.

摘要

了解调控细胞增殖和分化的分子机制是发育生物学的核心主题。微小RNA(miRNA)是一类约22个核苷酸的调控RNA,它们在转录后水平调控基因表达。越来越多的证据表明miRNA在各种生物学过程中具有潜在作用。在此我们表明,位于同一染色体位点上的miRNA-1(miR-1)和miRNA-133(miR-133)在发育过程中以组织特异性方式共同转录。miR-1和miR-133在体外培养的成肌细胞以及非洲爪蟾胚胎体内对骨骼肌增殖和分化的调节中具有不同作用。miR-1通过靶向组蛋白去乙酰化酶4(HDAC4,一种肌肉基因表达的转录抑制因子)来促进肌发生。相比之下,miR-133通过抑制血清反应因子(SRF)来增强成肌细胞增殖。我们的结果表明,源自同一miRNA多顺反子并共同转录的两种成熟miRNA可以执行不同的生物学功能。总之,我们的研究提示了一种分子机制,即miRNA参与控制骨骼肌基因表达和胚胎发育的转录调控回路。

相似文献

1
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.
Nat Genet. 2006 Feb;38(2):228-33. doi: 10.1038/ng1725. Epub 2005 Dec 25.
2
MicroRNAs involved in skeletal muscle differentiation.
J Genet Genomics. 2013 Mar 20;40(3):107-16. doi: 10.1016/j.jgg.2013.02.002. Epub 2013 Feb 20.
3
MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and .
J Biol Chem. 2018 Dec 14;293(50):19177-19190. doi: 10.1074/jbc.RA118.003198. Epub 2018 Oct 15.
4
miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development.
RNA Biol. 2016 Dec;13(12):1300-1309. doi: 10.1080/15476286.2016.1239008. Epub 2016 Sep 23.
5
Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.
Physiol Genomics. 2015 Mar;47(3):45-57. doi: 10.1152/physiolgenomics.00037.2014. Epub 2014 Dec 29.
6
MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis.
Cell Death Differ. 2016 Oct;23(10):1658-69. doi: 10.1038/cdd.2016.56. Epub 2016 Jun 17.
7
Role of microRNA-27a in myoblast differentiation.
Cell Biol Int. 2014 Feb;38(2):266-71. doi: 10.1002/cbin.10192. Epub 2013 Oct 30.
9
TNF-α and IGF1 modify the microRNA signature in skeletal muscle cell differentiation.
Cell Commun Signal. 2015 Jan 29;13:4. doi: 10.1186/s12964-015-0083-0.
10
Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells.
PLoS One. 2009 Oct 27;4(10):e7607. doi: 10.1371/journal.pone.0007607.

引用本文的文献

1
Targeting FOXK2 in triple-negative breast cancer: Role of the P53/MCAS1/miR-211-5p regulatory axis.
Funct Integr Genomics. 2025 Sep 13;25(1):191. doi: 10.1007/s10142-025-01697-9.
3
Hormesis and Muscle Plasticity.
Adv Exp Med Biol. 2025;1478:85-100. doi: 10.1007/978-3-031-88361-3_5.
5
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
6
Circular RNA circAtxn10 regulates skeletal muscle cell differentiation by targeting miR-143-3p and Chrna1.
Korean J Physiol Pharmacol. 2025 Sep 1;29(5):637-648. doi: 10.4196/kjpp.25.046. Epub 2025 Jul 24.
9
Function and Molecular Mechanism of Circhomer1 in Myogenesis.
Int J Mol Sci. 2025 Jun 28;26(13):6264. doi: 10.3390/ijms26136264.
10
MiR-221, miR-320a, miR133a, and miR-133b as potential biomarkers in leiomyosarcoma.
Front Oncol. 2025 Jun 20;15:1577859. doi: 10.3389/fonc.2025.1577859. eCollection 2025.

本文引用的文献

2
A microRNA polycistron as a potential human oncogene.
Nature. 2005 Jun 9;435(7043):828-33. doi: 10.1038/nature03552.
3
MicroRNA expression in zebrafish embryonic development.
Science. 2005 Jul 8;309(5732):310-1. doi: 10.1126/science.1114519. Epub 2005 May 26.
4
Combinatorial microRNA target predictions.
Nat Genet. 2005 May;37(5):495-500. doi: 10.1038/ng1536. Epub 2005 Apr 3.
5
A custom microarray platform for analysis of microRNA gene expression.
Nat Methods. 2004 Oct;1(1):47-53. doi: 10.1038/nmeth704. Epub 2004 Sep 29.
6
MicroRNAs regulate brain morphogenesis in zebrafish.
Science. 2005 May 6;308(5723):833-8. doi: 10.1126/science.1109020. Epub 2005 Mar 17.
7
Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice.
Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1082-7. doi: 10.1073/pnas.0409103102. Epub 2005 Jan 12.
8
Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis.
Development. 2005 Feb;132(3):553-63. doi: 10.1242/dev.01596. Epub 2005 Jan 5.
10
The functions of animal microRNAs.
Nature. 2004 Sep 16;431(7006):350-5. doi: 10.1038/nature02871.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验