Brugger M, Roesler S
CERN SC-RP, 1211 Geneva 23, Switzerland.
Radiat Prot Dosimetry. 2005;115(1-4):470-4. doi: 10.1093/rpd/nci053.
The LHC will require an extremely powerful and unprecedented collimation system. As approximately 30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given.