Suppr超能文献

软组织对脉冲声辐射力响应的有限元方法模型。

A finite-element method model of soft tissue response to impulsive acoustic radiation force.

作者信息

Palmeri Mark L, Sharma Amy C, Bouchard Richard R, Nightingale Roger W, Nightingale Kathryn R

机构信息

Duke University, Department of Biomedical Engineering, Durham, NC 27708, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Oct;52(10):1699-712. doi: 10.1109/tuffc.2005.1561624.

Abstract

Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson's ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue's dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers.

摘要

多个研究小组正在研究声辐射力及其对组织力学特性成像的能力。声辐射力脉冲(ARFI)成像是一种利用标准诊断超声扫描仪在组织中产生局部、脉冲式声辐射力的模态。通过传统的超声散斑跟踪方法测量组织的动态响应,并提供有关组织力学特性的信息。已经开发了一种有限元方法(FEM)模型,该模型模拟了有和没有球形内含物的组织对线性阵列换能器的脉冲声辐射力激发的动态响应。这些有限元模型已通过校准体模进行了验证。剪切波速度,进而弹性,决定了ARFI激发后组织的弛豫,但泊松比和密度不会显著改变组织的弛豫率。组织中声衰减的增加会使近场中组织位移的相对量相对于焦深增加,但弛豫率不会改变。该模型的应用包括提高图像质量,以及从组织对ARFI激发的动态响应中提取材料和结构信息。这些模型未来的工作包括纳入粘性材料特性以及对位移散射体的超声跟踪进行建模。

相似文献

1
A finite-element method model of soft tissue response to impulsive acoustic radiation force.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Oct;52(10):1699-712. doi: 10.1109/tuffc.2005.1561624.
2
Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Nov;53(11):2065-79. doi: 10.1109/tuffc.2006.146.
3
Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
Ultrason Imaging. 2004 Apr;26(2):100-14. doi: 10.1177/016173460402600203.
4
A parallel tracking method for acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):301-12. doi: 10.1109/tuffc.2007.244.
5
On the thermal effects associated with radiation force imaging of soft tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):551-65.
6
The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Nov;51(11):1523-36. doi: 10.1109/tuffc.2004.1367494.
7
Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jul;53(7):1300-13. doi: 10.1109/tuffc.2006.1665078.
8
Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):343-58. doi: 10.1109/TUFFC.2008.653.
9
Measuring the nonlinear elastic properties of tissue-like phantoms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):410-9. doi: 10.1109/tuffc.2004.1295426.
10
Viscoelastic property measurement in thin tissue constructs using ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):368-83. doi: 10.1109/TUFFC.2008.655.

引用本文的文献

1
VisR Ultrasound With Non-Normal ARF-AoS Incidence Interrogates Both Shear and Young's Elastic Moduli in Transversely Isotropic Materials.
IEEE Open J Ultrason Ferroelectr Freq Control. 2024;4:204-215. doi: 10.1109/ojuffc.2024.3520516. Epub 2024 Dec 19.
3
Labour diagnostics using the intrauterine pressure through sound waves emitted by a smartphone.
Med Biol Eng Comput. 2025 Jun;63(6):1849-1866. doi: 10.1007/s11517-025-03305-1. Epub 2025 Jan 31.
4
Computational predictions of magnetic resonance acoustic radiation force imaging for breast cancer focused ultrasound therapy.
Int J Hyperthermia. 2025 Dec;42(1):2452927. doi: 10.1080/02656736.2025.2452927. Epub 2025 Jan 22.
5
Acoustomotive diffuse correlation spectroscopy for sensing mechanical stiffness in tissue-mimicking phantoms.
Biomed Opt Express. 2024 Aug 19;15(9):5328-5348. doi: 10.1364/BOE.531963. eCollection 2024 Sep 1.
9
Optimization of the Tracking Beam Sequence in Harmonic Motion Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):102-116. doi: 10.1109/TUFFC.2023.3329729. Epub 2024 Jan 9.
10
Acoustic radiation force for analyzing the mechanical stress in ultrasound neuromodulation.
Phys Med Biol. 2023 Jun 27;68(13). doi: 10.1088/1361-6560/acdbb5.

本文引用的文献

1
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
2
A method for radiation-force localized drug delivery using gas-filled lipospheres.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jul;51(7):822-31. doi: 10.1109/tuffc.2004.1320741.
3
On the thermal effects associated with radiation force imaging of soft tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):551-65.
4
Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409. doi: 10.1109/tuffc.2004.1295425.
5
Shear-wave generation using acoustic radiation force: in vivo and ex vivo results.
Ultrasound Med Biol. 2003 Dec;29(12):1715-23. doi: 10.1016/j.ultrasmedbio.2003.08.008.
6
Radiation-force technique to monitor lesions during ultrasonic therapy.
Ultrasound Med Biol. 2003 Nov;29(11):1593-605. doi: 10.1016/s0301-5629(03)01052-4.
7
Radiation force imaging of viscoelastic properties with reduced artifacts.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):736-42. doi: 10.1109/tuffc.2003.1209564.
8
Estimates of echo correlation and measurement bias in acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):631-41. doi: 10.1109/tuffc.2003.1209550.
9
Application of nonlinear phenomena induced by focused ultrasound to bone imaging.
Ultrasound Med Biol. 2003 Mar;29(3):465-72. doi: 10.1016/s0301-5629(02)00729-9.
10
Microparticle column geometry in acoustic stationary fields.
J Acoust Soc Am. 2003 Jan;113(1):652-9. doi: 10.1121/1.1528171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验