Palmeri Mark L, McAleavey Stephen A, Trahey Gregg E, Nightingale Kathryn R
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jul;53(7):1300-13. doi: 10.1109/tuffc.2006.1665078.
The use of ultrasonic methods to track the tissue deformation generated by acoustic radiation force is subject to jitter and displacement underestimation errors, with displacement underestimation being primarily caused by lateral and elevation shearing within the point spread function (PSF) of the ultrasonic beam. Models have been developed using finite element methods and Field II, a linear acoustic field simulation package, to study the impact of focal configuration, tracking frequency, and material properties on the accuracy of ultrasonically tracking the tissue deformation generated by acoustic radiation force excitations. These models demonstrate that lateral and elevation shearing underneath the PSF of the tracking beam leads to displacement underestimation in the focal zone. Displacement underestimation can be reduced by using tracking beams that are narrower than the spatial extent of the displacement fields. Displacement underestimation and jitter decrease with time after excitation as shear wave propagation away from the region of excitation reduces shearing in the lateral and elevation dimensions. The use of higher tracking frequencies in broadband transducers, along with 2D focusing in the elevation dimension, will reduce jitter and improve displacement tracking accuracy. Relative displacement underestimation remains constant as a function of applied force, whereas jitter increases with applied force. Underdeveloped speckle (SNR < 1.91) leads to greater levels of jitter and peak displacement underestimation. Axial shearing is minimal over the tracking kernel lengths used in acoustic radiation force impulse imaging and thus does not impact displacement tracking.
使用超声方法来追踪声辐射力所产生的组织变形会受到抖动和位移低估误差的影响,位移低估主要是由超声束点扩散函数(PSF)内的横向和仰角剪切引起的。已使用有限元方法和线性声场模拟软件包Field II开发了模型,以研究聚焦配置、跟踪频率和材料特性对超声追踪声辐射力激发所产生的组织变形准确性的影响。这些模型表明,跟踪束PSF下方的横向和仰角剪切会导致焦区内的位移低估。通过使用比位移场空间范围更窄的跟踪束,可以减少位移低估。随着激发后时间的推移,位移低估和抖动会降低,因为剪切波从激发区域传播出去会减少横向和仰角维度上的剪切。在宽带换能器中使用更高的跟踪频率,以及在仰角维度上进行二维聚焦,将减少抖动并提高位移跟踪精度。相对位移低估作为施加力的函数保持恒定,而抖动随施加力增加。散斑不发达(信噪比<1.91)会导致更高水平的抖动和峰值位移低估。在声辐射力脉冲成像中使用的跟踪内核长度范围内,轴向剪切最小,因此不会影响位移跟踪。