Breban Romulus, Vardavas Raffaele, Blower Sally
Department of Biomathematics, University of California, Los Angeles, California 90095-1555, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046110. doi: 10.1103/PhysRevE.72.046110. Epub 2005 Oct 11.
We introduce a class of growing network models that are directly applicable to epidemiology. We show how to construct a growing network model (individual-level model) that generates the same epidemic-level outcomes as a population-level ordinary differential equation (ODE) model. For concreteness, we analyze the susceptible-infected (SI) ODE model of disease invasion. First, we give an illustrative example of a growing network whose population-level variables are compatible with those of this ODE model. Second, we demonstrate that a growing network model can be found that is equivalent to the Crump-Mode-Jagers (CMJ) continuous-time branching process of the SI ODE model of disease invasion. We discuss the computational advantages that our growing network model has over the CMJ branching process.
我们引入了一类直接适用于流行病学的增长网络模型。我们展示了如何构建一个增长网络模型(个体层面模型),该模型能产生与群体层面常微分方程(ODE)模型相同的流行病层面结果。具体而言,我们分析了疾病入侵的易感 - 感染(SI)ODE模型。首先,我们给出一个增长网络的示例,其群体层面变量与该ODE模型的变量兼容。其次,我们证明可以找到一个与疾病入侵的SI ODE模型的克兰普 - 莫德 - 贾格斯(CMJ)连续时间分支过程等效的增长网络模型。我们讨论了我们的增长网络模型相对于CMJ分支过程所具有的计算优势。