Muñoz Miguel A, Colaiori Francesca, Castellano Claudio
Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056102. doi: 10.1103/PhysRevE.72.056102. Epub 2005 Nov 3.
A detailed study of the mean-field solution of Langevin equations with multiplicative noise is presented. Three different regimes depending on noise intensity (weak, intermediate, and strong noise) are identified by performing a self-consistent calculation on a fully connected lattice. The most interesting, strong-noise, regime is shown to be intrinsically unstable with respect to the inclusion of fluctuations, as a Ginzburg criterion shows. On the other hand, the self-consistent approach is shown to be valid only in the thermodynamic limit, while for finite systems the critical behavior is found to be different. In this last case, the self-consistent field itself is broadly distributed rather than taking a well defined mean value; its fluctuations, described by an effective zero-dimensional multiplicative noise equation, govern the critical properties. These findings are obtained analytically for a fully connected graph, and verified numerically both on fully connected graphs and on random regular networks. The results presented here shed some doubt on what is the validity and meaning of a standard mean-field approach in systems with multiplicative noise in finite dimensions, where each site does not see an infinite number of neighbors, but a finite one. The implications of all this on the existence of a finite upper critical dimension for multiplicative noise and Kardar-Parisi-Zhang problems are briefly discussed.
本文对具有乘性噪声的朗之万方程的平均场解进行了详细研究。通过在全连接晶格上进行自洽计算,确定了依赖于噪声强度的三种不同区域(弱噪声、中等噪声和强噪声)。如金兹堡判据所示,最有趣的强噪声区域对于涨落的包含本质上是不稳定的。另一方面,自洽方法仅在热力学极限下有效,而对于有限系统,发现其临界行为有所不同。在后一种情况下,自洽场本身分布广泛,而不是取一个明确的平均值;由一个有效的零维乘性噪声方程描述的其涨落决定了临界性质。这些结果是通过对全连接图进行解析得到的,并在全连接图和随机正则网络上进行了数值验证。这里给出的结果对有限维乘性噪声系统中标准平均场方法的有效性和意义提出了一些疑问,在这类系统中,每个位点看到的邻居数量是有限的,而非无限的。简要讨论了所有这些对乘性噪声和卡达尔 - 帕里西 - 张问题的有限上临界维度存在性的影响。