Rocco A, Ramírez-Piscina L, Casademunt J
CWI, Postbus 94079, 1090 GB Amsterdam, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056116. doi: 10.1103/PhysRevE.65.056116. Epub 2002 May 17.
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
我们研究了在存在乘性噪声的情况下,一般反应扩散前沿(包括脉冲和化学波)的动力学。我们讨论了反应扩散类朗之万场方程与运动学(程函)描述之间的联系,这种联系是通过随机移动边界或尖锐界面近似来实现的。我们发现有效噪声是加性的,并且我们将其强度与原始场方程中的噪声参数相关联,精确到噪声强度的一阶,但包括对所有阶次的部分重整化,这捕捉了与噪声空间相关性相关的微观截止的奇异依赖性。这种依赖性对于定量和定性理解波动前沿至关重要,它影响标度性质和非普适量。我们的结果预测了一些现象,比如根据噪声参数,前沿传播的推动和拉动 regime 之间转变点的移动,以及相应地向非卡达尔 - 帕里西 - 张普适类的转变。我们在包括平衡涨落和动力学粗化在内的几个例子中评估了结果的定量有效性。我们还预测并观察到了噪声诱导的推动 - 拉动转变。分析预测与严格结果进行了成功对比,并与具有乘性噪声的反应扩散场方程的数值模拟结果显示出极好的一致性。