Park Moongyu, Kleinfelter Natalie, Cushman John H
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056305. doi: 10.1103/PhysRevE.72.056305. Epub 2005 Nov 2.
Over some range of scales natural porous media often display a fractal Eulerian velocity or conductivity field. If one assumes the fractal conductivity gives rise to fractal drift velocities, then particle paths may be studied in the framework of stochastic differential equations (SODEs). On the microscale, trajectories are modeled as solutions to a SODE with Markovian, stationary, ergodic drift subject to a fluctuating Lévy force. The Lévy force allows for self-motile particles such as flagellated microbes. On the mesoscale the trajectories are modeled as solutions to a SODE with Lévy (fractal) drift and diffusion arising from the microscale asymptotics. On the macroscale the process is driven by the asymptotics of the mesoscale drift without diffusion. Asymptotic scaling laws and dispersion equations are presented.
在一定尺度范围内,天然多孔介质通常呈现出分形欧拉速度场或传导率场。如果假设分形传导率会产生分形漂移速度,那么可以在随机微分方程(SDEs)的框架内研究粒子路径。在微观尺度上,轨迹被建模为一个具有马尔可夫、平稳、遍历漂移且受波动的列维力作用的随机微分方程的解。列维力适用于如鞭毛微生物等自运动粒子。在中观尺度上,轨迹被建模为一个由微观尺度渐近性产生的具有列维(分形)漂移和扩散的随机微分方程的解。在宏观尺度上,该过程由无扩散的中观尺度漂移的渐近性驱动。文中给出了渐近标度律和色散方程。