Suppr超能文献

对数扩散与多孔介质方程:一种统一描述

Logarithmic diffusion and porous media equations: a unified description.

作者信息

Pedron I T, Mendes R S, Buratta T J, Malacarne L C, Lenzi E K

机构信息

Universidade Estadual do Oeste do Paraná, Rua Pernambuco, 1777, 85960-000, Marechal Cândido Rondon, Paraná, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031106. doi: 10.1103/PhysRevE.72.031106. Epub 2005 Sep 20.

Abstract

In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a Lorentzian form, consequently this equation characterizes a superdiffusion like a Lévy kind. In addition an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized diffusion equation in fractal dimension, is obtained. This unification is performed in the nonextensive thermostatistics context and increases the possibilities about the description of anomalous diffusive processes.

摘要

在这项工作中,我们提出对数扩散方程,它是一个极限情况,即当表征非线性福克 - 普朗克方程扩散项的指数趋于零时的极限情况。该方程考虑了线性漂移和源项。其解具有洛伦兹形式,因此该方程表征了一种类似 Lévy 型的超扩散。此外,还得到了一个统一多孔介质和对数扩散方程的方程,其中包括分形维数下的广义扩散方程。这种统一是在非广延统计热力学的背景下进行的,增加了描述反常扩散过程的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验