Suppr超能文献

利用mRNA表达和蛋白质相互作用数据预测调控途径:应用于半乳糖调控途径的鉴定

Prediction of regulatory pathways using mRNA expression and protein interaction data: application to identification of galactose regulatory pathway.

作者信息

Darvish A, Najarian K

机构信息

College of Information Technology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

出版信息

Biosystems. 2006 Feb-Mar;83(2-3):125-35. doi: 10.1016/j.biosystems.2005.06.013. Epub 2005 Dec 27.

Abstract

We propose a novel technique that constructs gene regulatory networks from DNA microarray data and gene-protein databases and then applies Mason rule to systematically search for the most dominant regulators of the network. The algorithm then recommends the identified dominant regulator genes as the best candidates for future knock-out experiments. Actively choosing the genes for knock-out experiments allows optimal perturbation of the pathway and therefore produces the most informative DNA microarray data for pathway identification purposes. This approach is more practically advantageous in analysis of large pathways where the time and cost of DNA microarray data experiments can be reduced using the proposed optimal experiment design. The proposed method was successfully tested on the galactose regulatory network.

摘要

我们提出了一种新技术,该技术可从DNA微阵列数据和基因-蛋白质数据库构建基因调控网络,然后应用梅森规则系统地搜索该网络中最主要的调控因子。该算法随后将识别出的主要调控因子基因推荐为未来基因敲除实验的最佳候选基因。主动选择用于基因敲除实验的基因可实现对通路的最佳扰动,从而产生用于通路识别目的的最具信息性的DNA微阵列数据。在分析大型通路时,这种方法在实际应用中更具优势,因为使用所提出的最优实验设计可以减少DNA微阵列数据实验的时间和成本。所提出的方法已在半乳糖调控网络上成功进行了测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验