Singla-Pareek Sneh L, Yadav Sudesh K, Pareek Ashwani, Reddy M K, Sopory S K
Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
Plant Physiol. 2006 Feb;140(2):613-23. doi: 10.1104/pp.105.073734. Epub 2005 Dec 29.
We reported earlier that engineering of the glyoxalase pathway (a two-step reaction mediated through glyoxalase I and II enzymes) enhances salinity tolerance. Here we report the extended suitability of this engineering strategy for improved heavy-metal tolerance in transgenic tobacco (Nicotiana tabacum). The glyoxalase transgenics were able to grow, flower, and set normal viable seeds in the presence of 5 mm ZnCl2 without any yield penalty. The endogenous ion content measurements revealed roots to be the major sink for excess zinc accumulation, with negligible amounts in seeds in transgenic plants. Preliminary observations suggest that glyoxalase overexpression could confer tolerance to other heavy metals, such as cadmium or lead. Comparison of relative tolerance capacities of transgenic plants, overexpressing either glyoxalase I or II individually or together in double transgenics, evaluated in terms of various critical parameters such as survival, growth, and yield, reflected double transgenics to perform better than either of the single-gene transformants. Biochemical investigations indicated restricted methylglyoxal accumulation and less lipid peroxidation under high zinc conditions in transgenic plants. Studies employing the glutathione biosynthetic inhibitor, buthionine sulfoximine, suggested an increase in the level of phytochelatins and maintenance of glutathione homeostasis in transgenic plants during exposure to excess zinc as the possible mechanism behind this tolerance. Together, these findings presents a novel strategy to develop multiple stress tolerance via glyoxalase pathway engineering, thus implicating its potential use in engineering agriculturally important crop plants to grow on rapidly deteriorating lands with multiple unfavorable edaphic factors.
我们之前报道过,乙二醛酶途径(由乙二醛酶I和II介导的两步反应)工程可增强耐盐性。在此我们报道这种工程策略在提高转基因烟草(烟草)重金属耐受性方面具有更广泛的适用性。在5 mM ZnCl2存在的情况下,乙二醛酶转基因植株能够生长、开花并结出正常的有活力种子,且产量不受影响。内源离子含量测定表明,根是过量锌积累的主要储存部位,转基因植株种子中的锌含量可忽略不计。初步观察表明,乙二醛酶过表达可能赋予对其他重金属(如镉或铅)的耐受性。对单独过表达乙二醛酶I或II或双转基因中同时过表达二者的转基因植株的相对耐受能力进行比较,根据存活、生长和产量等各种关键参数评估,结果表明双转基因植株的表现优于任何一种单基因转化体。生化研究表明,在高锌条件下,转基因植株中甲基乙二醛积累受限,脂质过氧化程度较低。使用谷胱甘肽生物合成抑制剂丁硫氨酸亚砜胺的研究表明,在暴露于过量锌的过程中,转基因植株中植物螯合肽水平升高且谷胱甘肽稳态得以维持,这可能是这种耐受性背后的机制。总之,这些发现提出了一种通过乙二醛酶途径工程开发多重胁迫耐受性的新策略,从而暗示了其在培育重要农作物以在具有多种不利土壤因素且迅速退化的土地上生长方面的潜在用途。