Suppr超能文献

植物半胱氨酸合酶蛋白复合体的功能分析:结构、生化及调控特性

Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.

作者信息

Wirtz Markus, Hell Rüdiger

机构信息

Heidelberg Institute of Plant Sciences (HIP), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.

出版信息

J Plant Physiol. 2006 Feb;163(3):273-86. doi: 10.1016/j.jplph.2005.11.013. Epub 2005 Dec 28.

Abstract

Cysteine synthesis in plants represents the final step of assimilatory sulfate reduction and the almost exclusive entry reaction of reduced sulfur into metabolism not only of plants, but also the human food chain in general. It is accomplished by the sequential reaction of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they form the hetero-oligomeric cysteine synthase complex (CSC). Recent evidence is reviewed that identifies the dual function of the CSC as a sensor and as part of a regulatory circuit that controls cellular sulfur homeostasis. Computational modeling of three-dimensional structures of plant SAT and OAS-TL based on the crystal structure of the corresponding bacterial enzymes supports quaternary conformations of SAT as a dimer of trimers and OAS-TL as a homodimer. These findings suggest an overall alpha6beta4 structure of the subunits of the plant CSC. Kinetic measurements of CSC dissociation triggered by the reaction intermediate O-acetylserine as well as CSC stabilization by sulfide indicate quantitative reactions that are suited to fine-tune the equilibrium between free and associated CSC subunits. In addition, in vitro data show that SAT requires binding to OAS-TL for full activity, while at the same time bound OAS-TL becomes inactivated. Since OAS concentrations inside cells increase upon sulfate deficiency, whereas sulfide concentrations most likely decrease, these data suggest the dissociation of the CSC in vivo, accompanied by inactivation of SAT and activation of OAS-TL function in their free homo-oligomer states. Biochemical evidence describes this protein-interaction based mechanism as reversible, thus closing the regulatory circuit. The properties of the CSC and its subunits are therefore consistent with models of positive regulation of sulfate uptake and reduction in plants by OAS as well as a demand-driven repression/de-repression by a sulfur intermediate, such as sulfide.

摘要

植物中的半胱氨酸合成代表了同化硫酸盐还原的最后一步,也是还原态硫进入植物代谢以及整个人类食物链的几乎唯一的进入反应。这一过程由两种酶,即丝氨酸乙酰转移酶(SAT)和O-乙酰丝氨酸(硫醇)裂解酶(OAS-TL)的顺序反应完成。它们共同形成异源寡聚半胱氨酸合酶复合体(CSC)。本文综述了最近的证据,这些证据确定了CSC作为传感器以及作为控制细胞硫稳态的调节回路一部分的双重功能。基于相应细菌酶的晶体结构对植物SAT和OAS-TL的三维结构进行的计算建模支持SAT的三聚体二聚体四级构象以及OAS-TL的同型二聚体构象。这些发现表明植物CSC亚基的整体α6β4结构。由反应中间体O-乙酰丝氨酸引发的CSC解离以及硫化物对CSC的稳定作用的动力学测量表明,这些定量反应适合微调游离和相关CSC亚基之间的平衡。此外,体外数据表明,SAT需要与OAS-TL结合才能发挥全部活性,而同时结合的OAS-TL会失活。由于细胞内OAS浓度在硫酸盐缺乏时会增加,而硫化物浓度很可能会降低,这些数据表明体内CSC会解离,同时SAT失活,OAS-TL在其游离同型寡聚体状态下功能激活。生化证据将这种基于蛋白质相互作用的机制描述为可逆的,从而闭合了调节回路。因此,CSC及其亚基的特性与OAS对植物中硫酸盐吸收和还原的正调控模型以及由硫中间体(如硫化物)进行的需求驱动的抑制/去抑制模型一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验