From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg.
Heidelberg Institute for Theoretical Studies, 69118 Heidelberg.
J Biol Chem. 2010 Oct 22;285(43):32810-32817. doi: 10.1074/jbc.M110.157446. Epub 2010 Aug 18.
Cysteine synthesis in bacteria and plants is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol)-lyase (OAS-TL), which form the hetero-oligomeric cysteine synthase complex (CSC). In plants, but not in bacteria, the CSC is assumed to control cellular sulfur homeostasis by reversible association of the subunits. Application of size exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry revealed a hexameric structure of mitochondrial SAT from Arabidopsis thaliana (AtSATm) and a 2:1 ratio of the OAS-TL dimer to the SAT hexamer in the CSC. Comparable results were obtained for the composition of the cytosolic SAT from A. thaliana (AtSATc) and the cytosolic SAT from Glycine max (Glyma16g03080, GmSATc) and their corresponding CSCs. The hexameric SAT structure is also supported by the calculated binding energies between SAT trimers. The interaction sites of dimers of AtSATm trimers are identified using peptide arrays. A negative Gibbs free energy (ΔG = -33 kcal mol(-1)) explains the spontaneous formation of the AtCSCs, whereas the measured SAT:OAS-TL affinity (K(D) = 30 nm) is 10 times weaker than that of bacterial CSCs. Free SAT from bacteria is >100-fold more sensitive to feedback inhibition by cysteine than AtSATm/c. The sensitivity of plant SATs to cysteine is further decreased by CSC formation, whereas the feedback inhibition of bacterial SAT by cysteine is not affected by CSC formation. The data demonstrate highly similar quaternary structures of the CSCs from bacteria and plants but emphasize differences with respect to the affinity of CSC formation (K(D)) and the regulation of cysteine sensitivity of SAT within the CSC.
细菌和植物中的半胱氨酸合成由丝氨酸乙酰转移酶(SAT)和 O-乙酰丝氨酸(硫醇)-裂解酶(OAS-TL)催化,它们形成异源寡聚半胱氨酸合酶复合物(CSC)。在植物中,但不在细菌中,CSC 被认为通过亚基的可逆缔合来控制细胞硫平衡。应用尺寸排阻色谱、分析超速离心和等温热量滴定法揭示了拟南芥线粒体 SAT(AtSATm)的六聚体结构,以及 CSC 中 OAS-TL 二聚体与 SAT 六聚体的 2:1 比例。来自拟南芥的细胞质 SAT(AtSATc)和大豆的细胞质 SAT(Glycine max,Glyma16g03080,GmSATc)及其相应的 CSC 的组成也得到了类似的结果。SAT 三聚体之间的计算结合能也支持六聚体 SAT 结构。使用肽阵列鉴定了 AtSATm 三聚体二聚体的相互作用位点。负吉布斯自由能(ΔG = -33 kcal mol(-1)) 解释了 AtCSCs 的自发形成,而测量的 SAT:OAS-TL 亲和力(K(D) = 30 nm) 比细菌 CSCs 弱 10 倍。游离 SAT 来自细菌对胱氨酸的反馈抑制比 AtSATm/c 敏感 100 倍以上。CSC 形成进一步降低了植物 SAT 对胱氨酸的敏感性,而细菌 SAT 对胱氨酸的反馈抑制不受 CSC 形成的影响。这些数据表明,细菌和植物的 CSCs 具有高度相似的四级结构,但强调了 CSC 形成(K(D)) 和 CSC 内 SAT 对胱氨酸敏感性的调节方面的差异。