Sarcina Mary, Bouzovitis Nikolaos, Mullineaux Conrad W
School of Biological Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom.
Plant Cell. 2006 Feb;18(2):457-64. doi: 10.1105/tpc.105.035808. Epub 2005 Dec 30.
We use confocal fluorescence microscopy and fluorescence recovery after photobleaching to show that a specific light signal controls the diffusion of a protein complex in thylakoid membranes of the cyanobacterium Synechococcus sp PCC7942 in vivo. In low light, photosystem II appears completely immobile in the membrane. However, exposure to intense red light triggers rapid diffusion of up to approximately 50% of photosystem II reaction centers. Particularly intense or prolonged red light exposure also leads to the redistribution of photosystem II to specific zones within the thylakoid membranes. The mobilization does not result from photodamage but is triggered by a specific red light signal. We show that mobilization of photosystem II is required for the rapid initiation of recovery from photoinhibition. Thus, intense red light triggers a switch from a static to a dynamic configuration of thylakoid membrane protein complexes, and this facilitates the rapid turnover and repair of the complexes. The localized concentrations of photosystem II seen after red light treatment may correspond to specific zones where the repair cycle is active.
我们使用共聚焦荧光显微镜和光漂白后的荧光恢复技术,来证明特定的光信号在体内控制着蓝藻聚球藻属PCC7942类囊体膜中蛋白质复合物的扩散。在弱光条件下,光系统II在膜中似乎完全不移动。然而,暴露于强光下会触发高达约50%的光系统II反应中心的快速扩散。特别强烈或长时间的红光照射也会导致光系统II重新分布到类囊体膜内的特定区域。这种移动并非由光损伤引起,而是由特定的红光信号触发。我们表明,光系统II的移动是光抑制快速恢复起始所必需的。因此,强光触发了类囊体膜蛋白复合物从静态到动态构型的转变,这有助于复合物的快速周转和修复。红光处理后观察到的光系统II的局部浓度可能对应于修复循环活跃的特定区域。