School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Plant J. 2010 Jun 1;62(6):948-59. doi: 10.1111/j.0960-7412.2010.04207.x.
The diffusion of proteins in chloroplast thylakoid membranes is believed to be important for processes including the photosystem-II repair cycle and the regulation of light harvesting. However, to date there is very little direct information on the mobility of thylakoid proteins. We have used fluorescence recovery after photobleaching in a laser-scanning confocal microscope to visualize in real time the exchange of chlorophyll proteins between grana in intact spinach (Spinacia oleracea L.) and Arabidopsis chloroplasts. Most chlorophyll proteins in the grana appear immobile on the 10-min timescale of our measurements. However, a limited population of chlorophyll proteins (accounting for around 15% of chlorophyll fluorescence) can exchange between grana on this timescale. In intact, wild-type chloroplasts this mobile population increases significantly after photoinhibition, consistent with a role for protein diffusion in the photosystem-II repair cycle. No such increase in mobility is seen in isolated grana membranes, or in the Arabidopsis stn8 and stn7 stn8 mutants, which lack the protein kinases required for phosphorylation of photosystem II core proteins and light-harvesting complexes. Furthermore, mobility under low-light conditions is significantly lower in stn8 and stn7 stn8 plants than in wild-type Arabidopsis. The changes in protein mobility correlate with changes in the packing density and size of thylakoid protein complexes, as observed by freeze-fracture electron microscopy. We conclude that protein phosphorylation switches the membrane system to a more fluid state, thus facilitating the photosystem-II repair cycle.
叶绿体类囊体膜中蛋白质的扩散被认为对包括光系统-II 修复循环和光捕获调节在内的多个过程很重要。然而,迄今为止,关于类囊体蛋白的流动性,我们几乎没有直接的信息。我们利用激光扫描共聚焦显微镜中的光漂白后荧光恢复,实时可视化完整菠菜(Spinacia oleracea L.)和拟南芥叶绿体中类囊体中叶绿素蛋白的交换。在我们的测量 10 分钟时间尺度上,类囊体中的大多数叶绿素蛋白似乎处于不活动状态。然而,在这个时间尺度上,叶绿素蛋白的有限群体(约占叶绿素荧光的 15%)可以在类囊体之间交换。在完整的野生型叶绿体中,这种可移动群体在光抑制后显著增加,这与蛋白质扩散在光系统-II 修复循环中的作用一致。在分离的类囊体膜中,或在缺乏光系统 II 核心蛋白和光捕获复合物磷酸化所需蛋白激酶的 stn8 和 stn7 stn8 突变体中,没有看到这种流动性的增加。此外,stn8 和 stn7 stn8 植物中的蛋白质流动性在低光条件下明显低于野生型拟南芥。蛋白质流动性的变化与通过冷冻断裂电子显微镜观察到的类囊体蛋白复合物的堆积密度和大小的变化相关。我们得出结论,蛋白质磷酸化将膜系统切换到更流动的状态,从而促进光系统-II 修复循环。