Menéndez Nuria, Nur-e-Alam Mohammad, Fischer Carsten, Braña Alfredo F, Salas José A, Rohr Jürgen, Méndez Carmen
Departamento de Biología Funcional, Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería s/n, 33006 Oviedo, Spain.
Appl Environ Microbiol. 2006 Jan;72(1):167-77. doi: 10.1128/AEM.72.1.167-177.2006.
Chromomycin A3 is an antitumor drug produced by Streptomyces griseus subsp. griseus. It consists of a tricyclic aglycone with two aliphatic side chains and two O-glycosidically linked saccharide chains, a disaccharide of 4-O-acetyl-D-oliose (sugar A) and 4-O-methyl-D-oliose (sugar B), and a trisaccharide of D-olivose (sugar C), D-olivose (sugar D), and 4-O-acetyl-L-chromose B (sugar E). The chromomycin gene cluster contains four glycosyltransferase genes (cmmGI, cmmGII, cmmGIII, and cmmGIV), which were independently inactivated through gene replacement, generating mutants C60GI, C10GII, C10GIII, and C10GIV. Mutants C10GIV and C10GIII produced the known compounds premithramycinone and premithramycin A1, respectively, indicating the involvement of CmmGIV and CmmGIII in the sequential transfer of sugars C and D and possibly also of sugar E of the trisaccharide chain, to the 12a position of the tetracyclic intermediate premithramycinone. Mutant C10GII produced two new tetracyclic compounds lacking the disaccharide chain at the 8 position, named prechromomycin A3 and prechromomycin A2. All three compounds accumulated by mutant C60GI were tricyclic and lacked sugar B of the disaccharide chain, and they were named prechromomycin A4, 4A-O-deacetyl-3A-O-acetyl-prechromomycin A4, and 3A-O-acetyl-prechromomycin A4. CmmGII and CmmGI are therefore responsible for the formation of the disaccharide chain by incorporating, in a sequential manner, two D-oliosyl residues to the 8 position of the biosynthetic intermediate prechromomycin A3. A biosynthetic pathway is proposed for the glycosylation events in chromomycin A3 biosynthesis.
嗜铬霉素A3是由灰色链霉菌灰色亚种产生的一种抗肿瘤药物。它由一个带有两个脂肪族侧链的三环苷元以及两条O-糖苷键连接的糖链组成,一条是4-O-乙酰基-D-橄榄糖(糖A)和4-O-甲基-D-橄榄糖(糖B)的二糖链,另一条是D-橄榄糖(糖C)、D-橄榄糖(糖D)和4-O-乙酰基-L-铬糖B(糖E)的三糖链。嗜铬霉素基因簇包含四个糖基转移酶基因(cmmGI、cmmGII、cmmGIII和cmmGIV),通过基因置换使其独立失活,产生突变体C60GI、C10GII、C10GIII和C10GIV。突变体C10GIV和C10GIII分别产生了已知化合物前密旋霉素酮和前密旋霉素A1,这表明CmmGIV和CmmGIII参与了三糖链中糖C和糖D以及可能还有糖E依次转移至四环中间体前密旋霉素酮的12a位。突变体C10GII产生了两种新的四环化合物,它们在8位缺少二糖链,分别命名为前嗜铬霉素A3和前嗜铬霉素A2。突变体C60GI积累的所有三种化合物都是三环的,并且缺少二糖链中的糖B,它们被命名为前嗜铬霉素A4、4A-O-脱乙酰基-3A-O-乙酰基-前嗜铬霉素A4和3A-O-乙酰基-前嗜铬霉素A4。因此,CmmGII和CmmGI通过将两个D-橄榄糖基残基依次掺入生物合成中间体前嗜铬霉素A3的8位来负责二糖链的形成。本文提出了嗜铬霉素A3生物合成中糖基化事件的生物合成途径。