Suppr超能文献

厌氧细菌群落对添加有机碳在六价铬和三价铁改良微观世界中的响应。

Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms.

作者信息

Kourtev Peter S, Nakatsu Cindy H, Konopka Allan

机构信息

Department of Biological Sciences, 915 W. State Street, Purdue University, West Lafayette, IN 47907-2054.

出版信息

Appl Environ Microbiol. 2006 Jan;72(1):628-37. doi: 10.1128/AEM.72.1.628-637.2006.

Abstract

Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.

摘要

六价铬对微生物有毒,会抑制污染土壤中有机污染物的生物降解。我们使用添加了葡萄糖或蛋白质(以驱动细菌群落变化)以及铁(III)(以刺激铁还原菌)的微观生态系统,来研究不同浓度的六价铬对厌氧细菌群落的影响。根据微生物活性(以二氧化碳的释放量来衡量)对微观生态系统进行破坏性采样,并分析以下内容:(i)通过16S rRNA基因的PCR-变性梯度凝胶电泳(DGGE)分析优势细菌群落;(ii)可培养的耐铬细菌;(iii)通过实时PCR分析地杆菌科铁还原菌的富集情况。添加有机碳刺激了厌氧群落的活性。添加六价铬导致葡萄糖微观生态系统中二氧化碳的产生速率降低,而在添加蛋白质的微观生态系统中矿化阶段缓慢。葡萄糖和蛋白质的添加选择了不同的细菌群落。这种选择因添加六价铬而改变,因为在添加六价铬的微观生态系统中,一些DGGE条带增强,并且出现了新的条带。在活性开始后添加的第二剂六价铬,当添加较高水平的铬时具有强烈的抑制作用,这表明正在形成的耐铬群落具有相对较低的耐受阈值。大多数分离出的耐铬细菌与先前研究的耐铬厌氧菌密切相关,如泛菌属、假单胞菌属和肠杆菌属。在培养过程中地杆菌科没有富集。所研究的受六价铬污染的土壤中含有一个有活力的厌氧细菌群落;然而,六价铬改变了其组成,这可能会影响土壤的生物降解潜力。

相似文献

1
Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms.
Appl Environ Microbiol. 2006 Jan;72(1):628-37. doi: 10.1128/AEM.72.1.628-637.2006.
2
Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr).
Appl Environ Microbiol. 2005 Dec;71(12):7679-89. doi: 10.1128/AEM.71.12.7679-7689.2005.
3
Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms.
Appl Environ Microbiol. 2009 Oct;75(19):6249-57. doi: 10.1128/AEM.00347-09. Epub 2009 Aug 14.
8
Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.
Biodegradation. 2009 Feb;20(1):95-107. doi: 10.1007/s10532-008-9203-5. Epub 2008 Jul 5.
9
Nano-sized FeO/FeO facilitate anaerobic transformation of hexavalent chromium in soil-water systems.
J Environ Sci (China). 2017 Jul;57:329-337. doi: 10.1016/j.jes.2017.01.007. Epub 2017 Feb 5.

引用本文的文献

2
Wide-genome selection of lactic acid bacteria harboring genes that promote the elimination of antinutritional factors.
Front Plant Sci. 2023 Apr 26;14:1145041. doi: 10.3389/fpls.2023.1145041. eCollection 2023.
3
Comparative genomics of 16 spp. that tolerate multiple heavy metals and antibiotics.
PeerJ. 2019 Jan 14;6:e6258. doi: 10.7717/peerj.6258. eCollection 2019.
5
Dynamics in microbial communities: unraveling mechanisms to identify principles.
ISME J. 2015 Jul;9(7):1488-95. doi: 10.1038/ismej.2014.251. Epub 2014 Dec 19.
6
Complete genome sequence of Arthrobacter sp. strain FB24.
Stand Genomic Sci. 2013 Sep 30;9(1):106-16. doi: 10.4056/sigs.4438185. eCollection 2013 Oct 16.
7
Environmental controls on the activity of aquifer microbial communities in the 300 area of the Hanford site.
Microb Ecol. 2013 Nov;66(4):889-96. doi: 10.1007/s00248-013-0283-3. Epub 2013 Sep 6.
8
Are uncultivated bacteria really uncultivable?
Microbes Environ. 2012;27(4):356-66. doi: 10.1264/jsme2.me12092. Epub 2012 Oct 10.
9
Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.
PLoS One. 2012;7(6):e40059. doi: 10.1371/journal.pone.0040059. Epub 2012 Jun 29.
10
Complete genome sequence of Rahnella aquatilis CIP 78.65.
J Bacteriol. 2012 Jun;194(11):3020-1. doi: 10.1128/JB.00380-12.

本文引用的文献

2
Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
FEMS Microbiol Ecol. 2004 Jan 1;47(1):39-50. doi: 10.1016/S0168-6496(03)00232-0.
3
Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms.
FEMS Microbiol Ecol. 2002 Oct 1;42(1):109-18. doi: 10.1111/j.1574-6941.2002.tb01000.x.
4
Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons.
Microb Ecol. 2006 Feb;51(2):209-19. doi: 10.1007/s00248-005-0205-0. Epub 2006 Feb 10.
5
Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr).
Appl Environ Microbiol. 2005 Dec;71(12):7679-89. doi: 10.1128/AEM.71.12.7679-7689.2005.
6
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
7
Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov.
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1591-1599. doi: 10.1099/ijs.0.02958-0.
9
Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1.
Biotechnol Prog. 2004 Jan-Feb;20(1):87-95. doi: 10.1021/bp034131q.
10
Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer.
Appl Environ Microbiol. 2003 Oct;69(10):5884-91. doi: 10.1128/AEM.69.10.5884-5891.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验