Bohlen Holger, Schoen Martin
Stranski-Laboratorium für Physikalische und Theoretische Chemie, Sekretariat C 7, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany.
J Chem Phys. 2005 Sep 22;123(12):124714. doi: 10.1063/1.2036987.
We employ grand canonical ensemble Monte Carlo simulations to investigate the impact of substrate curvature on the phase behavior of an adjacent fluid. The substrates consist of a periodic sequence of grooves in the x direction; the grooves are infinitely long in the y direction. The shape of the grooves is controlled by a parameter eta. For eta = 0 the substrates are planar. If eta = 1, the grooves are wedge shaped. If eta > 1 the grooves become concave and in the limit eta = infinity rectangular. The fluid-substrate potential representing a groove consists of two contributions, namely, that of the homogeneous substrate base corresponding to a semi-infinite solid and that of a finite piece of solid with nonplanar surfaces. Whereas the former contribution can be calculated analytically, the latter needs to be evaluated numerically. For very large values of eta, that is in (almost) rectangular grooves, we observe capillary condensation of that portion of fluid located inside the grooves. As eta decreases capillary condensation gives way to continuous filling. In all cases, a nearly planar film-gas interface eventually forms in the direction normal to the surface of the substrate base and outside the grooves if one increases the chemical potential sufficiently.
我们采用巨正则系综蒙特卡罗模拟来研究基底曲率对相邻流体相行为的影响。基底由沿x方向的周期性凹槽序列组成;凹槽在y方向上无限长。凹槽的形状由参数η控制。当η = 0时,基底是平面的。当η = 1时,凹槽是楔形的。当η > 1时,凹槽变为凹形,在η = ∞的极限情况下变为矩形。表示凹槽的流体 - 基底势由两部分组成,即对应于半无限固体的均匀基底的贡献和具有非平面表面的有限固体块的贡献。前者的贡献可以通过解析计算,而后者需要通过数值评估。对于非常大的η值,即在(几乎)矩形凹槽中,我们观察到凹槽内流体部分的毛细管凝聚。随着η减小,毛细管凝聚让位于连续填充。在所有情况下,如果充分增加化学势,最终会在垂直于基底表面且在凹槽外部的方向上形成近乎平面的膜 - 气界面。