Suppr超能文献

流体侵入纳米槽:几何形状如何决定气液界面的形状。

Intrusion of fluids into nanogrooves: how geometry determines the shape of the gas-liquid interface.

作者信息

Bohlen H, Parry A O, Díaz-Herrera E, Schoen M

机构信息

Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Strabe des 17. Juni 135, 10623, Berlin, Germany.

出版信息

Eur Phys J E Soft Matter. 2008 Jan;25(1):103-15. doi: 10.1140/epje/i2007-10268-2. Epub 2008 Feb 27.

Abstract

We study the shape of gas-liquid interfaces forming inside rectangular nanogrooves (i.e., slit-pores capped on one end). On account of purely repulsive fluid-substrate interactions the confining walls are dry (i.e., wet by vapor) and a liquid-vapor interface intrudes into the nanogrooves to a distance determined by the pressure (i.e., chemical potential). By means of Monte Carlo simulations in the grand-canonical ensemble (GCEMC) we obtain the density rho(z) along the midline (x = 0) of the nanogroove for various geometries (i.e., depths D and widths L) of the nanogroove. We analyze the density profiles with the aid of an analytic expression which we obtain through a transfer-matrix treatment of a one-dimensional effective interface Hamiltonian. Besides geometrical parameters such as D and L , the resulting analytic expression depends on temperature T , densities of coexisting gas and liquid phases in the bulk rho g,l(x) and the interfacial tension gamma. The latter three quantities are determined in independent molecular dynamics simulations of planar gas-liquid interfaces. Our results indicate that the analytic formula provides an excellent representation of rho(z) as long as L is sufficiently small. At larger L the meniscus of the intruding liquid flattens. Under these conditions the transfer-matrix analysis is no longer adequate and the agreement between GCEMC data and the analytic treatment is less satisfactory.

摘要

我们研究了在矩形纳米槽(即一端封闭的狭缝孔)内形成的气液界面的形状。由于流体与基底之间仅存在排斥相互作用,限制壁是干燥的(即被蒸汽润湿),并且液 - 气界面侵入纳米槽的距离由压力(即化学势)决定。通过在巨正则系综(GCEMC)中的蒙特卡罗模拟,我们获得了对于纳米槽的各种几何形状(即深度(D)和宽度(L)),沿纳米槽中线((x = 0))的密度(\rho(z))。我们借助一个解析表达式来分析密度分布,该表达式是通过对一维有效界面哈密顿量进行转移矩阵处理得到的。除了诸如(D)和(L)这样的几何参数外,所得的解析表达式还取决于温度(T)、本体中气相和液相共存的密度(\rho_{g,l}(x))以及界面张力(\gamma)。后三个量是在平面气液界面的独立分子动力学模拟中确定的。我们的结果表明,只要(L)足够小,该解析公式就能很好地表示(\rho(z))。当(L)较大时,侵入液体的弯月面会变平。在这些条件下,转移矩阵分析不再适用,GCEMC数据与解析处理之间的一致性就不太令人满意了。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验