Francisco E, Martín Pendás A, Blanco M A
Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, E-33006 Oviedo, Spain.
J Chem Phys. 2005 Dec 15;123(23):234305. doi: 10.1063/1.2138688.
The global optimization basin-hopping (BH) method has been used to locate the global minima (GM) of Mg(n)F(2n) (n=1-30) clusters using a Born-Mayer-type potential. Some of the GM were particularly difficult to find, requiring more than 1.5 x 10(4) BH steps. We have found that both the binding energy per MgF2 unit and the effective volume of the GM isomers increase almost linearly with n, and that cluster symmetry decreases with cluster size. The data derived from the BH runs reveal a growing density of local minima just above the GM as n increases. Despite this, the attraction basin around each GM is relatively large, since after all their atomic coordinates are randomly displaced by values as high as 2.0 bohrs, the perturbed structures, upon reoptimization, relax back to the GM in more than 50% of the cases (except for n=10 and 11). The relative stabilities derived from energy second differences suggest that n=8,10,13,15, and 20 are probably the magic numbers for these systems. Mass spectrum experiments would be very useful to clarify this issue.
全局优化盆地跳跃(BH)方法已被用于使用玻恩 - 迈耶型势来定位Mg(n)F(2n)(n = 1 - 30)团簇的全局最小值(GM)。其中一些全局最小值特别难以找到,需要超过1.5×10⁴次BH步骤。我们发现,每个MgF₂单元的结合能和GM异构体的有效体积几乎都随n呈线性增加,并且团簇对称性随团簇尺寸减小。从BH运行中获得的数据表明,随着n的增加,刚好高于全局最小值的局部最小值密度不断增加。尽管如此,每个全局最小值周围的吸引盆地相对较大,因为毕竟它们的原子坐标被随机位移高达2.0玻尔的值后,在超过50%的情况下(n = 10和11除外),重新优化后的扰动结构会松弛回到全局最小值。从能量二阶差分得出的相对稳定性表明,n = 8、10、13、15和20可能是这些体系的幻数。质谱实验对于阐明这个问题将非常有用。