Suppr超能文献

基于蚁群的聚类与地形映射。

Ant-based clustering and topographic mapping.

作者信息

Handl J, Knowles J, Dorigo M

机构信息

School of Chemistry, The University of Manchester, P.O. Box 88, Sackville Street, M60 1QD Manchester, UK.

出版信息

Artif Life. 2006 Winter;12(1):35-61. doi: 10.1162/106454606775186400.

Abstract

Ant-based clustering and sorting is a nature-inspired heuristic first introduced as a model for explaining two types of emergent behavior observed in real ant colonies. More recently, it has been applied in a data-mining context to perform both clustering and topographic mapping. Early work demonstrated some promising characteristics of the heuristic but did not extend to a rigorous investigation of its capabilities. We describe an improved version, called ATTA, incorporating adaptive, heterogeneous ants, a time-dependent transporting activity, and a method (for clustering applications) that transforms the spatial embedding produced by the algorithm into an explicit partitioning. ATTA is then subjected to the most rigorous experimental evaluation of an ant-based clustering and sorting algorithm undertaken to date: we compare its performance with standard techniques for clustering and topographic mapping using a set of analytical evaluation functions and a range of synthetic and real data collections. Our results demonstrate the ability of ant-based clustering and sorting to automatically identify the number of clusters inherent in a data collection, and to produce high quality solutions; indeed, we show that it is particularly robust for clusters of differing sizes and for overlapping clusters. The results obtained for topographic mapping are, however, disappointing. We provide evidence that the solutions generated by the ant algorithm are barely topology-preserving, and we explain in detail why results have--in spite of this--been misinterpreted (much more positively) in previous research.

摘要

基于蚁群的聚类与排序是一种受自然启发的启发式算法,最初作为一种模型被引入,用于解释在真实蚁群中观察到的两种涌现行为。最近,它已被应用于数据挖掘领域,以执行聚类和地形映射任务。早期的工作展示了该启发式算法的一些有前景的特性,但并未对其能力进行严格的研究。我们描述了一个改进版本,称为ATTA,它包含了自适应的、异质的蚂蚁、随时间变化的运输活动,以及一种(用于聚类应用)将算法产生的空间嵌入转换为显式划分的方法。然后,我们对ATTA进行了迄今为止最严格的基于蚁群的聚类与排序算法实验评估:我们使用一组分析评估函数以及一系列合成数据和真实数据集,将其性能与聚类和地形映射的标准技术进行比较。我们的结果表明,基于蚁群的聚类与排序能够自动识别数据集中固有的聚类数量,并产生高质量的解决方案;实际上,我们表明它对于不同大小的聚类和重叠聚类特别稳健。然而,地形映射所获得的结果却令人失望。我们提供证据表明,蚁群算法生成的解决方案几乎不能保持拓扑结构,并且我们详细解释了为什么尽管如此,在先前的研究中结果却被(更积极地)错误解读了。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验