Suppr超能文献

一种基于蚁群优化的新型心律失常聚类技术。

A new arrhythmia clustering technique based on Ant Colony Optimization.

作者信息

Korürek Mehmet, Nizam Ali

机构信息

Electrical and Electronics Engineering Faculty, Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.

出版信息

J Biomed Inform. 2008 Dec;41(6):874-81. doi: 10.1016/j.jbi.2008.01.014. Epub 2008 Feb 23.

Abstract

In this paper, a new method for clustering analysis of QRS complexes is proposed. We present an efficient Arrhythmia Clustering and Detection algorithm based on medical experiment and Ant Colony Optimization technique for QRS complex. The algorithm has been developed based on not only the general signal detection knowledge, but also on the ECG signal's specific features. Furthermore, our study brings the power of Ant Colony Optimization technique to the ECG clustering area. ACO-based clustering technique has also been improved using nearest neighborhood interpolation. At the beginning of our algorithm, we implement signal filtering, baseline wandering and parameter extraction procedures. Next is the learning phase which consists of clustering the QRS complexes based on the Ant Colony Optimization technique. A Neural Network algorithm is developed in parallel to verify and measure the success of our novel algorithm. The last stage is the testing phase to control the efficiency and correctness of the algorithm. The method is tested with MIT-BIH database to classify six different arrhythmia types of vital importance. These are normal sinus rhythm, premature ventricular contraction (PVC), atrial premature contraction (APC), right bundle branch block, ventricular fusion and fusion. Our simulation results indicate that this new approach has correctness and speed improvements.

摘要

本文提出了一种用于QRS波群聚类分析的新方法。我们基于医学实验和蚁群优化技术,针对QRS波群提出了一种高效的心律失常聚类与检测算法。该算法不仅基于一般的信号检测知识开发,还基于心电图信号的特定特征。此外,我们的研究将蚁群优化技术的优势引入到心电图聚类领域。基于蚁群优化的聚类技术也通过最近邻插值得到了改进。在我们算法的开始阶段,我们执行信号滤波、基线漂移和参数提取过程。接下来是学习阶段,该阶段基于蚁群优化技术对QRS波群进行聚类。同时开发了一种神经网络算法来验证和衡量我们新算法的成功与否。最后一个阶段是测试阶段,以控制算法的效率和正确性。该方法使用麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)数据库进行测试,以对六种不同的、至关重要的心律失常类型进行分类。这些类型包括正常窦性心律、室性早搏(PVC)、房性早搏(APC)、右束支传导阻滞、心室融合波和融合波。我们的仿真结果表明,这种新方法在正确性和速度方面都有改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验