Dworzanski Jacek P, Deshpande Samir V, Chen Rui, Jabbour Rabih E, Snyder A Peter, Wick Charles H, Li Liang
Geo-Centers, Inc., Aberdeen Proving Ground, Maryland 21010-0068, USA.
J Proteome Res. 2006 Jan;5(1):76-87. doi: 10.1021/pr050294t.
Timely classification and identification of bacteria is of vital importance in many areas of public health. We present a mass spectrometry (MS)-based proteomics approach for bacterial classification. In this method, a bacterial proteome database is derived from all potential protein coding open reading frames (ORFs) found in 170 fully sequenced bacterial genomes. Amino acid sequences of tryptic peptides obtained by LC-ESI MS/MS analysis of the digest of bacterial cell extracts are assigned to individual bacterial proteomes in the database. Phylogenetic profiles of these peptides are used to create a matrix of sequence-to-bacterium assignments. These matrixes, viewed as specific assignment bitmaps, are analyzed using statistical tools to reveal the relatedness between a test bacterial sample and the microorganism database. It is shown that, if a sufficient amount of sequence information is obtained from the MS/MS experiments, a bacterial sample can be classified to a strain level by using this proteomics method, leading to its positive identification.
及时对细菌进行分类和鉴定在公共卫生的许多领域都至关重要。我们提出了一种基于质谱(MS)的细菌分类蛋白质组学方法。在该方法中,细菌蛋白质组数据库源自170个全序列细菌基因组中发现的所有潜在蛋白质编码开放阅读框(ORF)。通过对细菌细胞提取物消化产物进行LC-ESI MS/MS分析获得的胰蛋白酶肽的氨基酸序列被分配到数据库中的各个细菌蛋白质组。这些肽的系统发育谱用于创建序列到细菌分配的矩阵。这些矩阵被视为特定的分配位图,使用统计工具进行分析以揭示测试细菌样品与微生物数据库之间的相关性。结果表明,如果从MS/MS实验中获得足够量的序列信息,使用这种蛋白质组学方法可以将细菌样品分类到菌株水平,从而实现其阳性鉴定。