Suppr超能文献

通过 MiCId 增强工作流程鉴定抗生素耐药蛋白。一种基于质谱的蛋白质组学方法。

Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States.

Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.

出版信息

J Am Soc Mass Spectrom. 2022 Jun 1;33(6):917-931. doi: 10.1021/jasms.1c00347. Epub 2022 May 2.

Abstract

Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published croorganism lassification and entification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: , , and . The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

摘要

快速准确地鉴定病原菌及其相关抗生素耐药蛋白对患者治疗和公共卫生至关重要。为了从质谱角度实现这一目标,我们增强了之前发表的微生物分类和鉴定(MiCId)工作流程以实现这一功能。为了评估这个增强工作流程的性能,我们使用了来自三种不同物种的 10 种抗生素耐药细菌菌株的 MS/MS 数据文件: , 和 。评估结果表明,MiCId 工作流程在鉴定抗生素耐药蛋白方面的灵敏度值约为 85%(下限约为 72%),且精度大于 95%。除了具有高灵敏度和精度外,MiCId 工作流程还快速且便携,是快速鉴定细菌以及检测其抗生素耐药蛋白的有价值工具。它使用大多数台式和笔记本电脑都具备的计算资源,在每个 MS/MS 样本上执行微生物鉴定、蛋白质鉴定、样本生物量估计和抗生素耐药蛋白鉴定,耗时 6-17 分钟。我们还展示了 MiCId 工作流程的其他用途。使用来自两种细菌克隆分离株样本的 MS/MS 数据集,其中一个对抗生素敏感,另一个对多种药物耐药,我们应用 MiCId 工作流程来研究这些病原菌中抗生素耐药的可能机制;结果表明,MiCId 的结论与已发表的研究一致。新版本的 MiCId(v.07.01.2021)可在 https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html 免费下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace0/9164240/de6507e36faa/js1c00347_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验