Schweizer Kenneth S
Department of Materials Science, Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA.
J Chem Phys. 2005 Dec 22;123(24):244501. doi: 10.1063/1.2137701.
A recently proposed microscopic activated barrier hopping theory [K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181 (2003)] of slow single-particle dynamics in glassy liquids, suspensions, and gels is derived using nonequilibrium statistical mechanics. Fundamental elements underlying the stochastic nonlinear Langevin equation description include an inhomogeneous liquid or locally solid-state perspective, dynamic density-functional theory (DDFT), a local equilibrium closure, and a coarse-grained free-energy functional. A dynamic Gaussian approximation is not adopted which is the key for avoiding a kinetic ideal glass transition. The relevant excess free energy is of a nonequilibrium origin and is related to dynamic force correlations in the fluid. The simplicity of the approach allows external perturbations to be rather easily incorporated. Dynamic heterogeneity enters naturally via mobility fluctuations associated with the stochastic barrier-hopping process. The derivation both identifies the limitations of the theory and suggests new avenues for its systematic improvement. Comparisons with ideal mode-coupling theory, alternative DDFT approaches and a field theoretic path-integral formulation are presented.
最近提出的一种关于玻璃态液体、悬浮液和凝胶中慢单粒子动力学的微观活化势垒跳跃理论[K. S. 施韦泽和E. J. 萨尔茨曼,《化学物理杂志》119, 1181 (2003)]是利用非平衡统计力学推导出来的。随机非线性朗之万方程描述背后的基本要素包括非均匀液体或局部固态视角、动态密度泛函理论(DDFT)、局部平衡闭合以及粗粒化自由能泛函。未采用动态高斯近似,这是避免动力学理想玻璃转变的关键。相关的过量自由能源于非平衡,并且与流体中的动态力关联有关。该方法的简单性使得外部扰动相当容易纳入。动态非均匀性通过与随机势垒跳跃过程相关的迁移率涨落自然地进入。该推导既确定了该理论的局限性,又为其系统改进提出了新途径。还给出了与理想模式耦合理论、替代的DDFT方法以及场论路径积分公式的比较。