Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
J Chem Phys. 2017 May 21;146(19):194906. doi: 10.1063/1.4983224.
We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values.
我们为稀溶质在密液、胶体悬浮液和玻璃中的激活扩散制定了一个微观、力级统计力学理论。该方法明确且自洽地考虑了溶质跳跃和基质动态位移之间的耦合,后者积极促进跳跃事件。关键的新思想涉及基质和球形溶质颗粒的两个机制上(在随机轨迹水平上)耦合的动态自由能函数。单个动态耦合参数量化了当后者达到其过渡态时基质相对于溶质的位移量,该过渡态是通过执行时间因果关系或一致性条件来确定的。该理论适用于比基质颗粒小的稀溶质,无论是否存在溶质-基质吸引力。模型计算揭示了溶质扩散常数和动态耦合程度对尺寸比、体积分数和吸引力强度的丰富依赖性。在没有吸引力的情况下,预测了溶质扩散率随尺寸比的近指数下降,而如果假设局部基质动力学波动与溶质运动不相关,则会出现更陡峭、非指数变化。对于粘性溶质,研究了笼效应与物理键形成的相对和绝对影响。确定了从存在溶质和基质激活跳跃的时间尺度分离的情况到“从属”或“约束释放”完全耦合的动态交叉的条件。将粒子混合物模型映射到处理实验热系统,并应用于预测聚醋酸乙烯酯液体和玻璃中水中、甲苯、甲醇和氧气的扩散系数。该理论与实验吻合良好,溶质-基质尺寸比的值接近其化学直觉值。